A linear-scaling self-consistent generalization of the multistate empirical valence bond method for multiple excess protons in aqueous systems.

An extension to the multistate empirical valence bond (MS-EVB) method is presented in this paper that is capable of treating multiple excess protons within the context of molecular-dynamics simulation. The computational cost of the method scales linearly with respect to the number of excess protons. Calculations for a 0.44 M HCl systems are carried out to illustrate the multiproton extension of the MS-EVB method. A significant decrease in the Eigen-type H(9)O(4)(+) cation is observed in the contact ion-pair configuration formed between Cl(-) and hydronium ions.

[1]  A. Soper,et al.  Ions in water: the microscopic structure of a concentrated HCl solution. , 2004, The Journal of chemical physics.

[2]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[3]  G. Voth,et al.  The isotope substitution effect on the hydrated proton , 2000 .

[4]  Gregory A. Voth,et al.  A second generation multistate empirical valence bond model for proton transport in aqueous systems , 2002 .

[5]  R. Fuoss,et al.  Electrolyte-Solvent Interaction. VI. Tetrabutylammonium Bromide in Nitrobenzene-Carbon Tetrachloride Mixtures1 , 1954 .

[6]  Noam Agmon Structure of Concentrated HCl Solutions , 1998 .

[7]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[8]  K. Schulten,et al.  The mechanism of proton exclusion in aquaporin channels , 2004, Proteins.

[9]  A. Fainberg,et al.  SALT EFFECTS AND ION-PAIRS IN SOLVOLYSIS1 , 1954 .

[10]  Aatto Laaksonen,et al.  Concentration Effects in Aqueous NaCl Solutions. A Molecular Dynamics Simulation , 1996 .

[11]  R. Clark,et al.  Advances in Infrared and Raman Spectroscopy , 1982 .

[12]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[13]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[14]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[15]  H. Danneel Notiz über Ionengeschwindigkeiten , 1905 .

[16]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[19]  Gregory A. Voth,et al.  Multistate Empirical Valence Bond Model for Proton Transport in Water , 1998 .

[20]  A. Narten,et al.  Diffraction pattern and structure of aqueous hydrochloric acid solutions at 20 °C , 1975 .

[21]  G. Voth,et al.  Quantum Properties of the Excess Proton in Liquid Water , 1999 .

[22]  M. Parrinello,et al.  Ab-Initio Molecular Dynamics: Principles and Practical Implementation , 1991 .

[23]  Hadas Lapid,et al.  A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. , 2005, The Journal of chemical physics.

[24]  Gregory A. Voth,et al.  The hydrated proton at the water liquid/vapor interface , 2004 .

[25]  Gregory A. Voth,et al.  The Mechanism of Hydrated Proton Transport in Water , 2000 .

[26]  Martin Cuma,et al.  A multi-state empirical valence bond model for acid base chemistry in aqueous solution , 2000 .

[27]  Daniel Borgis,et al.  Transport and spectroscopy of the hydrated proton: A molecular dynamics study , 1999 .

[28]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[29]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[30]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[31]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[32]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[33]  G. Voth,et al.  A computer simulation study of the hydrated proton in a synthetic proton channel. , 2003, Biophysical journal.

[34]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[35]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[36]  Gregory A. Voth,et al.  The quantum dynamics of an excess proton in water , 1996 .

[37]  G. Voth,et al.  Molecular dynamics simulation of proton transport through the influenza A virus M2 channel. , 2002, Biophysical journal.

[38]  Arieh Warshel,et al.  Computer Modeling of Chemical Reactions in Enzymes and Solutions , 1991 .

[39]  I. Ruff,et al.  Transport phenomena in aqueous solutions , 1974 .

[40]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[41]  G. Voth,et al.  A Multi-State Empirical Valence Bond Model for Weak Acid Dissociation in Aqueous Solution† , 2001 .

[42]  G. Voth,et al.  The formation and dynamics of proton wires in channel environments. , 2001, Biophysical journal.

[43]  Manfred Eigen,et al.  Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES†‡ , 1964 .

[44]  Gregory A Voth,et al.  Molecular dynamics simulation of proton transport near the surface of a phospholipid membrane. , 2002, Biophysical journal.

[45]  Jeongho Kim,et al.  The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis , 2002 .