Backmapping coarse-grained polymer models under sheared nonequilibrium conditions.

The method of re-introducing atomistic detail into a coarse-grained polymer structure, so-called backmapping, is extended to a nonequilibrium situation. Problems in backmapping coarse-grained polymer models, on which a nonequilibrium shear flow has been imposed, are discussed. A backmapping protocol, where the globally deformed conformations are maintained during backmapping by applying position restraints, is proposed. The local optimization of the atomistic structure is performed in the presence of these restraints. The artifact of segment isolation introduced by position restraints is minimized by applying different restraint patterns iteratively. The procedure is demonstrated on the test case of atactic polystyrene under a steady shear flow.

[1]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[2]  Kurt Kremer,et al.  Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations , 2006 .

[3]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  G. Mitchell,et al.  Conformational analysis of oriented non-crystalline polymers using wide angle X-ray scattering , 1982 .

[5]  Andrea Di Matteo,et al.  From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains. , 2007, The journal of physical chemistry. B.

[6]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[7]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[8]  Jt Johan Padding,et al.  Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow , 2003 .

[9]  R. Penwell,et al.  Temperature dependence of viscosity–shear rate behavior in undiluted polystyrene , 1974 .

[10]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[11]  Florian Müller-Plathe,et al.  Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. , 2005, The journal of physical chemistry. B.

[12]  Theodora Spyriouni,et al.  Coarse-Grained and Reverse-Mapped United-Atom Simulations of Long-Chain Atactic Polystyrene Melts: Structure, Thermodynamic Properties, Chain Conformation, and Entanglements , 2007 .

[13]  N. V. D. Vegt,et al.  Equilibration and deformation of amorphous polystyrene: scale-jumping simulational approach , 2008 .

[14]  Michael Kotelyanskii,et al.  Building Large Amorphous Polymer Structures: Atomistic Simulation of Glassy Polystyrene , 1996 .

[15]  Florian Müller-Plathe,et al.  Scale-Hopping in Computer Simulations of Polymers , 2002 .

[16]  M. Michels,et al.  Correlated segmental dynamics in amorphous atactic polystyrene: A Molecular dynamics simulation study , 2002 .

[17]  Fabrizia Negri,et al.  A coarse-grained model for polyphenylene dendrimers : Switching and backfolding of planar three-fold core dendrimers , 2007 .

[18]  G. Mitchell,et al.  Structure of polystyrene glasses , 1984 .

[19]  P. Flory,et al.  Configurational statistics of vinyl polymer chains , 1974 .

[20]  Kurt Kremer,et al.  Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. , 2006, Soft matter.

[21]  Florian Müller-Plathe,et al.  Local Structure and Dynamics in Solvent-Swollen Polymers , 1996 .

[22]  Florian Müller-Plathe,et al.  Multicentered Gaussian‐based potentials for coarse‐grained polymer simulations: Linking atomistic and mesoscopic scales , 2005 .

[23]  U. Suter,et al.  Conformational characteristics of polystyrene , 1994 .

[24]  R. Wool,et al.  Molecular deformation of polypropylene , 1980 .

[25]  Vlasis G. Mavrantzas,et al.  Atomistic Molecular Dynamics Simulation of Stress Relaxation upon Cessation of Steady-State Uniaxial Elongational Flow , 2000 .

[26]  T. Bleha,et al.  Torsional potential and strain energy distribution in an extended chain under stress , 1988 .

[27]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[28]  G. Mitchell,et al.  Application of cylindrical distribution functions to wide-angle X-ray scattering from oriented polymers , 1981 .

[29]  Kurt Kremer,et al.  Classical simulations from the atomistic to the mesoscale and back: coarse graining an liquid crystal. , 2008, Soft matter.

[30]  Kurt Kremer,et al.  Simulation of Polymer Melts. II. From Coarse-Grained Models Back to Atomistic Description , 1998 .

[31]  D. Bedrov,et al.  Structure of Atactic Polystyrene: A Molecular Dynamics Simulation Study , 2000 .

[32]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[33]  F Müller-Plathe,et al.  Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  F. Müller-Plathe,et al.  Viscosity and Structural Alteration of a Coarse-Grained Model of Polystyrene under Steady Shear Flow Studied by Reverse Nonequilibrium Molecular Dynamics , 2007 .

[35]  P. Lindner,et al.  Shear-induced deformation of polystyrene coils in dilute solution from small angle neutron scattering 2. Variation of shear gradient, molecular mass and solvent viscosity , 1988 .

[36]  N. V. D. Vegt,et al.  Molecular Simulation Via Connectivity-altering Monte Carlo and Scale-jumping Methods: Application to Amorphous Polystyrene , 2008 .

[37]  Roland Faller,et al.  Crossover from Unentangled to Entangled Dynamics in a Systematically Coarse-Grained Polystyrene Melt , 2006 .

[38]  Florian Müller-Plathe,et al.  Permeation of polymers — a computational approach , 1994 .