A Poisson-Fault Model for Testing Power Transformers in Service

This paper presents a method for assessing the instant failure rate of a power transformer under different working conditions. The method can be applied to a dataset of a power transformer under periodic inspections and maintenance. We use a Poisson-fault model to describe failures of a power transformer. When investigating a Bayes estimate of the instant failure rate under the model, we find that complexities of a classical method and a Monte Carlo simulation are unacceptable. Through establishing a new filtered estimate of Poisson process observations, we propose a quick algorithm of the Bayes estimate of the instant failure rate. The proposed algorithm is tested by simulation datasets of a power transformer. For these datasets, the proposed estimators of parameters of the model have better performance than other estimators. The simulation results reveal the suggested algorithms are quickest among three candidates.

[1]  M.K. Pradhan,et al.  On the estimation of elapsed life of oil-immersed power transformers , 2005, IEEE Transactions on Power Delivery.

[2]  Anja Walter,et al.  Introduction To Stochastic Calculus With Applications , 2016 .

[3]  Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents , 1999 .

[4]  Robert J. Elliott,et al.  Insurance claims modulated by a hidden Brownian marked point process , 2009 .

[5]  J. Sanz,et al.  A moisture-in-oil model for power transformer monitoring - Part II: Experimental verification , 2005, IEEE Transactions on Power Delivery.

[6]  Robert J. Elliott,et al.  Discrete-Time Expectation Maximization Algorithms for Markov-Modulated Poisson Processes , 2008, IEEE Transactions on Automatic Control.

[7]  Chris Chatfield,et al.  The Analysis of Time Series , 1990 .

[8]  Peter A. J. Hilbers,et al.  A Bayesian approach to targeted experiment design , 2012, Bioinform..

[9]  Qihong Duan,et al.  Relationship between the benchmark interest rate and a macroeconomic indicator , 2014 .

[10]  Liu Jun-rong,et al.  Parameter Estimation for a k-out-of-n: F System , 2014 .

[11]  Ariana Torres-Knoop,et al.  On the inner workings of Monte Carlo codes , 2013 .

[12]  Lawrence D. Brown,et al.  The Poisson Compound Decision Problem Revisited , 2010, 1006.4582.

[13]  M. Lehtonen,et al.  Effect of harmonics on transformers loss of life , 2006, Conference Record of the 2006 IEEE International Symposium on Electrical Insulation.

[14]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[15]  Robert J. Elliott,et al.  A martingale Kronecker lemma and parameter estimation for linear systems , 1998, IEEE Trans. Autom. Control..

[16]  Ires Iskender,et al.  An improved nonlinear thermal model for MV/LV prefabricated oil-immersed power transformer substations , 2011 .

[17]  Qihong Duan,et al.  New models of trader beliefs and their application for explaining financial bubbles , 2011 .

[18]  W. J. Padgett INFERENCE FROM ACCELERATED LIFE TESTS , 1984 .

[19]  Dengfu Zhao,et al.  Parameter Estimation of a Multistate Model for an Aging Piece of Equipment under Condition-Based Maintenance , 2012 .

[20]  Junrong Liu,et al.  Parameter Estimation for a k-out-of-n: F System , 2014, Commun. Stat. Simul. Comput..

[21]  Dengfu Zhao,et al.  An Expectation Maximization Algorithm to Model Failure Times by Continuous-Time Markov Chains , 2010 .