Primordial black holes in loop quantum gravity: The effect on the threshold

. Primordial black holes form in the early Universe and constitute one of the most viable candidates for dark matter. The study of their formation process requires the determination of a critical energy density perturbation threshold δ c , which in general depends on the underlying gravity theory. Up to now, the majority of analytic and numerical techniques calculate δ c within the framework of general relativity. In this work, using simple physical arguments we estimate semi-analytically the PBH formation threshold within the framework of quantum gravity, working for concreteness within loop quantum gravity (LQG), which constitutes a non-perturbative and background-independent quantization of general relativity. In particular, for low mass PBHs formed close to the quantum bounce, we find a reduction in the value of δ c up to 50% compared to the general relativistic regime quantifying for the first time to the best of our knowledge how quantum effects can influence PBH formation within a quantum gravity framework. Finally, by varying the Barbero-Immirzi parameter γ of LQG we show its effect on the value of δ c while using the observational/phenomenological signatures associated to ultra-light PBHs, namely the ones affected by LQG effects, we propose the PBH portal as a novel probe to constrain the potential quantum nature of gravity.

[1]  K. Gourgouliatos,et al.  Primordial magnetic field generation via primordial black hole disks , 2023, 2301.10045.

[2]  K. Kohri,et al.  Threshold of primordial black hole formation against velocity dispersion in matter-dominated era , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  E. Saridakis,et al.  No constraints for f(T) gravity from gravitational waves induced from primordial black hole fluctuations , 2022, The European Physical Journal C.

[4]  T. Papanikolaou Gravitational waves induced from primordial black hole fluctuations: the effect of an extended mass function , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  L. Graef,et al.  Constraining the Barbero-Immirzi parameter from the duration of inflation in loop quantum cosmology , 2022, Physical Review D.

[6]  T. Papanikolaou Toward the primordial black hole formation threshold in a time-dependent equation-of-state background , 2022, Physical Review D.

[7]  M. Lewicki,et al.  Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes , 2022, Journal of High Energy Physics.

[8]  E. Saridakis,et al.  Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity , 2021, Journal of Cosmology and Astroparticle Physics.

[9]  I. Musco,et al.  Primordial black hole formation for an anisotropic perfect fluid: Initial conditions and estimation of the threshold , 2021, Physical Review D.

[10]  S. Carneiro,et al.  Quasinormal modes and horizon area quantisation in Loop Quantum Gravity , 2020, General Relativity and Gravitation.

[11]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[12]  A. Riotto,et al.  Threshold for primordial black holes. II. A simple analytic prescription , 2021 .

[13]  Parampreet Singh,et al.  Role of dissipative effects in the quantum gravitational onset of warm Starobinsky inflation in a closed universe , 2021, Physical Review D.

[14]  R. Sheth,et al.  Analytical thresholds for black hole formation in general cosmological backgrounds , 2020, Journal of Cosmology and Astroparticle Physics.

[15]  Leonid Perlov Barbero–Immirzi value from experiment , 2020, Modern Physics Letters A.

[16]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[17]  M. Sasaki,et al.  Gravitational wave constraints on the primordial black hole dominated early universe , 2020, Journal of Cosmology and Astroparticle Physics.

[18]  Che-yu Chen Threshold of primordial black hole formation in Eddington-inspired-Born–Infeld gravity , 2020, International Journal of Modern Physics D.

[19]  V. Vennin,et al.  Gravitational waves from a universe filled with primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[20]  Hal M. Haggard,et al.  Effective Spin Foam Models for Four-Dimensional Quantum Gravity. , 2020, Physical review letters.

[21]  Hirotada Okawa,et al.  Threshold of primordial black hole formation in nonspherical collapse , 2020, Physical Review D.

[22]  M. Musso,et al.  Application of peaks theory to the abundance of primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[23]  S. Carneiro,et al.  On the value of the Immirzi parameter and the horizon entropy , 2020, Classical and Quantum Gravity.

[24]  R. Sheth,et al.  Nonlinear statistics of primordial black holes from Gaussian curvature perturbations , 2019, Physical Review D.

[25]  R. Sheth,et al.  Universal threshold for primordial black hole formation , 2019, Physical Review D.

[26]  D. Sapone,et al.  Evaporating primordial black holes as varying dark energy , 2019, Physics of the Dark Universe.

[27]  Jérôme Martin,et al.  Primordial black holes from the preheating instability in single-field inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[28]  L. Graef,et al.  Observational constraints on warm inflation in loop quantum cosmology , 2019, Journal of Cosmology and Astroparticle Physics.

[29]  A. Riotto,et al.  Non-Gaussian formation of primordial black holes: effects on the threshold , 2019, Journal of Cosmology and Astroparticle Physics.

[30]  Chul-Moon Yoo,et al.  Abundance of primordial black holes with local non-Gaussianity in peak theory , 2019, Journal of Cosmology and Astroparticle Physics.

[31]  D. Hooper,et al.  Dark radiation and superheavy dark matter from black hole domination , 2019, Journal of High Energy Physics.

[32]  K. Kohri,et al.  Gravitational waves induced by scalar perturbations during a gradual transition from an early matter era to the radiation era , 2019, Journal of Physics: Conference Series.

[33]  C. Byrnes,et al.  Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation , 2019, Journal of Cosmology and Astroparticle Physics.

[34]  M. Peloso,et al.  The ineludible non-Gaussianity of the primordial black hole abundance , 2019, Journal of Cosmology and Astroparticle Physics.

[35]  N. Padmanabhan,et al.  GUT-scale primordial black holes: mergers and gravitational waves , 2019, Journal of Cosmology and Astroparticle Physics.

[36]  M. Kawasaki,et al.  Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation , 2019, Physical Review D.

[37]  I. Musco Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations , 2018, Physical Review D.

[38]  S. Matarrese,et al.  Primordial black holes from inflation and non-Gaussianity , 2018, 1801.09415.

[39]  J. Garc'ia-Bellido,et al.  Seven hints for primordial black hole dark matter , 2017, Physics of the Dark Universe.

[40]  M. Safarzadeh Primordial black holes as seeds of magnetic fields in the universe , 2017, Monthly Notices of the Royal Astronomical Society.

[41]  Y. Eroshenko,et al.  Gravitational waves from primordial black holes collisions in binary systems , 2016, Journal of Physics: Conference Series.

[42]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[43]  Patrick Wong Shape Dynamical Loop Gravity from a Conformal Immirzi Parameter , 2017, 1701.07420.

[44]  T. Thiemann,et al.  Uniqueness of the Representation in Homogeneous Isotropic LQC , 2016, 1609.03548.

[45]  M. Sandstad,et al.  Ellipsoidal collapse and primordial black hole formation , 2016, 1602.04815.

[46]  D. Regan,et al.  Influence of large local and non-local bispectra on primordial black hole abundance , 2015, 1512.07224.

[47]  Yongge Ma,et al.  New Hamiltonian constraint operator for loop quantum gravity , 2015, 1507.00986.

[48]  T. Nakama,et al.  Primordial black holes as a novel probe of primordial gravitational waves , 2015, 1506.05228.

[49]  K. Kohri,et al.  Threshold of primordial black hole formation , 2013, 1309.4201.

[50]  C. Byrnes,et al.  Primordial black holes in non-Gaussian regimes , 2013, 1307.4995.

[51]  A. Ashtekar Introduction to loop quantum gravity and cosmology , 2012, 1201.4598.

[52]  A. Ashtekar,et al.  On the uniqueness of kinematics of loop quantum cosmology , 2012, 1209.4374.

[53]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[54]  Eugenio Bianchi Entropy of Non-Extremal Black Holes from Loop Gravity , 2012, 1204.5122.

[55]  A. Karami,et al.  Loop quantum cosmology of k=1 FRW: A tale of two bounces , 2011, 1105.3724.

[56]  D. Pranzetti,et al.  Black hole entropy from the SU(2)-invariant formulation of type I isolated horizons , 2010, 1006.0634.

[57]  M. Szanecki,et al.  A relation between the Barbero–Immirzi parameter and the standard model , 2010, 1002.3041.

[58]  A. Ashtekar,et al.  Loop quantum cosmology and slow roll inflation , 2009, 0912.4093.

[59]  E. Bugaev,et al.  Induced gravitational wave background and primordial black holes , 2009, 0908.0664.

[60]  S. Mercuri,et al.  Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations , 2009, 0903.4407.

[61]  Parampreet Singh Are loop quantum cosmos never singular? , 2009, 0901.2750.

[62]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[63]  A. Ashtekar Loop quantum cosmology: an overview , 2008, 0812.0177.

[64]  Christian. Fleischhack,et al.  Representations of the Weyl Algebra in Quantum Geometry , 2004, math-ph/0407006.

[65]  Jiliang Jing,et al.  Dynamics of an interacting dark energy model in Einstein and loop quantum cosmology , 2008, 0808.3482.

[66]  Hongwei Yu,et al.  Dynamics of interacting phantom scalar field dark energy in loop quantum cosmology , 2008, 0808.1382.

[67]  Claus Kiefer,et al.  Modern Canonical Quantum General Relativity , 2008 .

[68]  Shuang-Nan Zhang,et al.  Cosmological evolution of the interacting phantom (quintessence) model in loop quantum gravity , 2008, 0805.2255.

[69]  M. Bojowald Loop Quantum Cosmology , 2005, Living reviews in relativity.

[70]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2008, Living Reviews in Relativity.

[71]  A. Ashtekar,et al.  Loop quantum cosmology of k = 1 FRW models , 2006, gr-qc/0612104.

[72]  Parampreet Singh,et al.  Formation and evolution of structure in loop cosmology. , 2006, Physical review letters.

[73]  Weiming Huang,et al.  FUNDAMENTAL STRUCTURE OF LOOP QUANTUM GRAVITY , 2005, gr-qc/0509064.

[74]  A. Ashtekar,et al.  Quantum Nature of the Big Bang: Improved dynamics , 2006, gr-qc/0607039.

[75]  T. Thiemann,et al.  Communications in Mathematical Physics Uniqueness of Diffeomorphism Invariant States on Holonomy – Flux Algebras , 2006 .

[76]  L. Rezzolla,et al.  Computations of primordial black-hole formation , 2004, gr-qc/0412063.

[77]  K. Meissner Black-hole entropy in loop quantum gravity , 2004, gr-qc/0407052.

[78]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[79]  A. Ashtekar,et al.  Mathematical structure of loop quantum cosmology , 2003, gr-qc/0304074.

[80]  D. Spergel,et al.  Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures , 2003, astro-ph/0302035.

[81]  R. Bean,et al.  Could supermassive black holes be quintessential primordial black holes , 2002, astro-ph/0204486.

[82]  M. Shibata,et al.  Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity , 1999, gr-qc/9905064.

[83]  Takahiro Tanaka,et al.  Black hole binary formation in the expanding universe: Three body problem approximation , 1998, astro-ph/9807018.

[84]  J. Niemeyer,et al.  Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes , 1997, astro-ph/9709072.

[85]  T. Thiemann Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.

[86]  K. Thorne,et al.  Gravitational Waves from Coalescing Black Hole MACHO Binaries , 1997, astro-ph/9708060.

[87]  F. Wilczek,et al.  Quantum hair on black holes , 1992, hep-th/9201059.

[88]  Copeland,et al.  Baryogenesis in extended inflation. II. Baryogenesis via primordial black holes. , 1990, Physical review. D, Particles and fields.

[89]  M. Rees,et al.  How large were the first pregalactic objects , 1984 .

[90]  I. Novikov,et al.  Hydrodynamics of primordial black hole formation: dependence on the equation of state , 1980 .

[91]  R. Henriksen,et al.  Formation of primordial black holes. , 1979 .

[92]  I. Novikov,et al.  Hydrodynamics of primordial black hole formation , 1978 .

[93]  B. Carr The Primordial black hole mass spectrum , 1975 .

[94]  G. Chapline,et al.  Cosmological effects of primordial black holes , 1975, Nature.

[95]  P. Mészáros Primeval black holes and galaxy formation , 1975 .

[96]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[97]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .