A Fixed-Parameter Algorithm for #SAT with Parameter Incidence Treewidth

We present an efficient fixed-parameter algorithm for #SAT parameterized by the incidence treewidth, i.e., the treewidth of the bipartite graph whose vertices are the variables and clauses of the given CNF formula; a variable and a clause are joined by an edge if and only if the variable occurs in the clause. Our algorithm runs in time O(4^k k l N), where k denotes the incidence treewidth, l denotes the size of a largest clause, and N denotes the number of nodes of the tree-decomposition.

[1]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[2]  Naomi Nishimura,et al.  Solving #SAT using vertex covers , 2006, Acta Informatica.

[3]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[4]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[5]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[6]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[7]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[8]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[9]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[10]  Georg Gottlob,et al.  Fixed-parameter complexity in AI and nonmonotonic reasoning , 1999, Artif. Intell..

[11]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[12]  Marko Samer,et al.  Constraint satisfaction with bounded treewidth revisited , 2006, J. Comput. Syst. Sci..

[13]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[14]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[15]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[16]  Georg Gottlob,et al.  Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems , 2007, Comput. J..

[17]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[18]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[19]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..