Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+–OI2− defect center in KTaO3 crystal

The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors and , are theoretically investigated for the FeK3+–OI2− center in KTaO3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin–orbit interaction as well as the spin–spin and spin–other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the FeK3+–OI2− defect center in KTaO3. This modeling reveals that the off-center displacement of the Fe3+ ions, Δ1(Fe3+), combined with an inward relaxation of the nearest oxygen ligands, Δ2(O2−), and the existence of the interstitial oxygen OI2− give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the FeK3+–OI2− center in KTaO3. Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ1(Fe3+) and Δ2(O2−) as well as the possible location of OI2− ligands around Fe3+ ions in KTaO3. The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, and and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing in the literature indicates considerable advantages of our method and presumably higher reliability of our predictions.

[1]  M. Brik,et al.  Low symmetry aspects in spectroscopic and magnetic susceptibility studies of Tb3+(4f8) in TbAlO3 , 2009 .

[2]  J. A. Aramburu,et al.  Nature of the Fe 4 2 center in KTaO 3 : A density functional theory study , 2008 .

[3]  C. Rudowicz Clarification of the confusion concerning the crystal-field quantities vs the zero-field splitting quantities in magnetism studies: Part II—Survey of literature dealing with model studies of spin systems , 2008 .

[4]  C. Rudowicz Clarification of the confusion concerning the crystal-field quantities vs. the zero-field splitting quantities in magnetism studies: Part I—Survey of literature dealing with specific compounds , 2008 .

[5]  D. Evans,et al.  Electric field effects in the EPR spectrum of low-spin Ni3+ centers in the KTaO3 crystal , 2007 .

[6]  Mei-Jia Yang,et al.  An alternative interpretation of the optical spectra for Fe3+-doped KTaO3 crystals , 2007 .

[7]  Z. Wen-chen Studies of the defect structure for Mn2+ in KTaO3 crystal from the calculation of EPR zero-field splitting. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  A. Mamedov,et al.  Electronic and optical properties of KTaO3: Ab initio calculation , 2007 .

[9]  S. Kapphan,et al.  EPR investigation of iron-related centers inFe57-dopedKTaO3 , 2006 .

[10]  C. Rudowicz,et al.  Electron magnetic resonance studies ofFe3+ions inBaTiO3: Implications of the misinterpretation of zero-field splitting terms and comparative data analysis , 2006 .

[11]  Xiao-xuan Wu,et al.  Investigations of zero-field splitting and defect structure for the tetragonal Fe3+K–OI center in KTaO3 crystal , 2006 .

[12]  G. Samara,et al.  Dipolar centers in incipient ferroelectrics :Mn and Fe in KTaO3. , 2005 .

[13]  Y. Hao,et al.  Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin–spin and spin–other-orbit interactions for Ni2+(3d8) ions in trigonal crystal fields , 2004 .

[14]  C. Rudowicz,et al.  Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals , 2004 .

[15]  D. Vanderbilt,et al.  Atomistic simulations of the incipient ferroelectric KTaO3 , 2004, cond-mat/0401318.

[16]  M. Wildner,et al.  Optical absorption spectroscopy in geosciences: Part I: Basic concepts of crystal field theory , 2004 .

[17]  M. Wildner,et al.  Optical absorption spectroscopy in geosciences: Part II: Quantitative aspects of crystal fields , 2004 .

[18]  C. Rudowicz,et al.  Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2 and d8 ions at low symmetry C3 symmetry sites: V3+ in Al2O3 , 2003 .

[19]  C. Rudowicz,et al.  Spin Hamiltonian and structural disorder analysis for two high temperature Cr3+ defect centers in α-LiIO3 crystals—low symmetry effects , 2003 .

[20]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[21]  C. Rudowicz,et al.  Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field - perturbation theory methods versus complete diagonalization methods , 2002 .

[22]  K. Leung Transition-metal ion impurities in KTaO 3 , 2001 .

[23]  C. Rudowicz,et al.  Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters , 2001 .

[24]  W. Zheng,et al.  Structures of Fe3+-Vo defects in ABO3 perovskite-type crystals , 2001 .

[25]  C. Rudowicz,et al.  SPIN-HAMILTONIAN FORMALISMS IN ELECTRON MAGNETIC RESONANCE (EMR) AND RELATED SPECTROSCOPIES , 2001 .

[26]  H. Reyher,et al.  A magnetic circular dichroism and optically detected magnetic resonance investigation of Fe2+ and Fe3+ centres in KTaO3 , 2000 .

[27]  L. S. Sochava,et al.  Electric-field-induced orientation of iron tetragonal centers in KTaO3 , 2000 .

[28]  L. Jastrabík,et al.  Paramagnetic dipole centers in KTaO 3 : Electron-spin-resonance and dielectric spectroscopy study , 2000 .

[29]  J. Mulak,et al.  The Effective Crystal Field Potential , 2000 .

[30]  H. Schulz,et al.  Luminescence spectroscopy of iron-doped KTaO3 crystals , 1999 .

[31]  Z. Wen-chen,et al.  Defect models of the low and high temperature centres of in crystals , 1999 .

[32]  L. Jastrabík,et al.  Local-structure model of rhombic-symmetry Fe3+ centre in KTaO3 , 1999 .

[33]  A. Wee,et al.  Ground-state properties of cubic C-BN solid solutions , 1999 .

[34]  V. Laguta Local structure of the rhombic Fe3+ center in KTaO3 , 1998 .

[35]  Ma Dong-ping,et al.  Pressure-induced shifts of energy levels of alpha-Al2O3:V3+ and a complete ligand-field calculation , 1997 .

[36]  I. Golovina,et al.  EPR and dielectric relaxation of Fe3+ in KTaO3 , 1997 .

[37]  V. Vikhnin,et al.  Observation of superhyperfine structure in the ESR spectra of two tetragonal Fe centers in KTaO3 and a new model for the center , 1997 .

[38]  H. Reyher,et al.  Optically detected magnetic resonance of Fe4+OI in KTaO3 , 1996 .

[39]  Faust,et al.  Optical alignment of axial Fe centers in KTaO3. , 1995, Physical review. B, Condensed matter.

[40]  Yu Wan-Lun An investigation of the zero-field splitting of Fe3+ ions at the tetragonal FeF5O site in Fe3+:KMgF3 crystals , 1994 .

[41]  C. Rudowicz,et al.  Crystal field energy levels and state vectors for the 3d N ions at orthorhombic or higher symmetry sites , 1993 .

[42]  Exner,et al.  Local geometry of Fe3+ ions on the potassium sites in KTaO3. , 1993, Physical review. B, Condensed matter.

[43]  M. Glinchuk,et al.  Rhombic Fe3+ centers in KTaO3 , 1992 .

[44]  Czeslaw Rudowicz,et al.  Ligand Field Analysis of the 3dN Ions At Orthorhombic or Higher Symmetry Sites , 1992, Comput. Chem..

[45]  Wan-Lun,et al.  Comprehensive approach to the zero-field splitting of S6-state ions: Mn2+ and Fe3+ in fluoroperovskites. , 1992, Physical review. B, Condensed matter.

[46]  Wen-chen Local structure of the axial Fe3+ center in the K+ site of a KTaO3 crystal. , 1992, Physical review. B, Condensed matter.

[47]  D. Collison,et al.  Electron paramagnetic resonance of d transition metal compounds , 1992 .

[48]  Zhou Yi-Yang Local-structure model of K+ site in KTaO3:Fe3+ , 1990 .

[49]  J. Pilbrow,et al.  Transition Ion Electron Paramagnetic Resonance , 1990 .

[50]  D. Newman,et al.  The superposition model of crystal fields , 1989 .

[51]  S. Febbraro A ligand-field approach to the zero-field splitting of 3d5(S=5/2) ions: Fe3+ and Mn2+ paramagnetic centres in garnets and other oxides , 1988 .

[52]  C. Rudowicz On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators , 1987 .

[53]  S. Febbraro Zero-field splitting of 3d5 (S=5/2) ions in axial symmetry: correlation with the Racah and ligand-field parameters , 1987 .

[54]  Xiao-yu Analysis of the electron paramagnetic resonance zero-field splitting for Fe3+ in sapphire. , 1987, Physical review. B, Condensed matter.

[55]  C. Rudowicz,et al.  Transformation relations for the conventional Okq and normalised O'kq Stevens operator equivalents with k=1 to 6 and -k⩽q⩽k , 1985 .

[56]  Zhao Min-guang,et al.  Erratum: d-orbital theory and high-pressure effects upon the EPR spectrum of ruby , 1983 .

[57]  R. Bramley,et al.  Electron paramagnetic resonance spectroscopy at zero magnetic field , 1983 .

[58]  W. White,et al.  Optical absorption spectrum of hematite, αFe2O3 near IR to UV☆ , 1980 .

[59]  K. A. Müller,et al.  Structure of transition-metal—oxygen-vacancy pair centers , 1979 .

[60]  D. Newman,et al.  Superposition model analysis of the near infrared spectrum of Fe (super 2+) in pyrope-almandine garnets , 1978 .

[61]  A. Edgar CORRIGENDUM: Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts , 1976 .

[62]  Serafin Fraga,et al.  Handbook of atomic data , 1976 .

[63]  D. Hannon Electron Paramagnetic Resonance ofMn2+in KTaO3 , 1971 .

[64]  D. Newman Theory of lanthanide crystal fields , 1971 .

[65]  R. R. Sharma Spin-Lattice Coupling Constants of an Fe 3+ Ion in MgO , 1968 .

[66]  D. Hannon Electron Paramagnetic Resonance ofFe3+andNi3+in KTaO3 , 1967 .

[67]  T. P. Das,et al.  Zero-field splitting of S-state ions. II. Overlap and covalency model , 1967 .

[68]  T. P. Das,et al.  Zero-Field Splitting of S-State Ions. I. Point-Multipole Model , 1966 .

[69]  R. E. Watson,et al.  Theory of spin-orbit coupling in atoms, II. Comparison of theory with experiment , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  R. E. Watson,et al.  Theory of spin-orbit coupling in atoms I. Derivation of the spin-orbit coupling constant , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.