Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget

Abstract Despite recent improvements in satellite instrument calibration and the algorithms used to determine reflected solar (SW) and emitted thermal (LW) top-of-atmosphere (TOA) radiative fluxes, a sizeable imbalance persists in the average global net radiation at the TOA from satellite observations. This imbalance is problematic in applications that use earth radiation budget (ERB) data for climate model evaluation, estimate the earth’s annual global mean energy budget, and in studies that infer meridional heat transports. This study provides a detailed error analysis of TOA fluxes based on the latest generation of Clouds and the Earth’s Radiant Energy System (CERES) gridded monthly mean data products [the monthly TOA/surface averages geostationary (SRBAVG-GEO)] and uses an objective constrainment algorithm to adjust SW and LW TOA fluxes within their range of uncertainty to remove the inconsistency between average global net TOA flux and heat storage in the earth–atmosphere system. The 5-yr global mean...

[1]  Stephen J. Cox,et al.  The NASA/GEWEX Surface Radiation Budget project: overview and analysis , 2006 .

[2]  Roger Davies,et al.  Fusion of CERES, MISR, and MODIS measurements for top-of-atmosphere radiative flux validation , 2006 .

[3]  H. Lisa,et al.  ERBE Geographic Scene and Monthly Snow Data , 1997 .

[4]  Patrick Minnis,et al.  Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment , 1998 .

[5]  David R. Doelling,et al.  The newly released 5-year Terra-based monthly CERES radiative flux and cloud product , 2006 .

[6]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[7]  J. Rice,et al.  Sources of Differences in On-Orbital Total Solar Irradiance Measurements and Description of a Proposed Laboratory Intercomparison , 2008, Journal of research of the National Institute of Standards and Technology.

[8]  Norman G. Loeb,et al.  Top‐of‐atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth's Radiant Energy System (CERES) instruments on Terra , 2005 .

[9]  Bruce A. Wielicki,et al.  Multi-instrument comparison of top-of-atmosphere reflected solar radiation , 2007 .

[10]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[11]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[12]  Keith W. Dixon,et al.  Anthropogenic Warming of Earth's Climate System , 2001, Science.

[13]  Patrick Minnis,et al.  CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua , 2004, SPIE Remote Sensing.

[14]  Bruce A. Wielicki,et al.  Defining Top-of-the-Atmosphere Flux Reference Level for Earth Radiation Budget Studies , 2002 .

[15]  Bruce A. Wielicki,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[16]  S. Dewitte,et al.  The Geostationary Earth Radiation Budget Edition 1 data processing algorithms , 2008 .

[17]  K. Trenberth,et al.  The Annual Cycle of the Energy Budget. Part I: Global Mean and Land–Ocean Exchanges , 2008 .

[18]  J. Coakley,et al.  Multiyear Advanced Very High Resolution Radiometer observations of summertime stratocumulus collocated with aerosols in the northeastern Atlantic , 2006 .

[19]  James P. Hollinger,et al.  SSM/I instrument evaluation , 1990 .

[20]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[21]  J. Willis,et al.  Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales , 2004 .

[22]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[23]  Zhanqing Li,et al.  Scene Identification and Its Effect on Cloud Radiative Forcing in the Arctic , 1991 .

[24]  D. F. Young,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[25]  N. Loeb,et al.  Twilight Irradiance Reflected by the Earth Estimated from Clouds and the Earth's Radiant Energy System (CERES) Measurements , 2003 .

[26]  Robert F. Cahalan,et al.  A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds , 2008 .

[27]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[28]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[29]  Bruce A. Wielicki,et al.  Top-of-Atmosphere Radiative Fluxes: Validation of ERBE Scanner Inversion Algorithm Using Nimbus-7 ERB Data , 1992 .

[30]  Robert F. Cahalan,et al.  Impact of 3-D clouds on clear-sky reflectance and aerosol retrieval in a biomass burning region of Brazil , 2006, IEEE Geoscience and Remote Sensing Letters.

[31]  Shaopeng Huang Land warming as part of global warming , 2006 .

[32]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[33]  Robert Benjamin Lee,et al.  Reexamination of the Observed Decadal Variability of the Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data , 2006 .

[34]  Patrick Minnis,et al.  Development of algorithms for understanding the temporal and spatial variability of the Earth's Radiation Balance , 1986 .

[35]  Bruce A. Wielicki,et al.  Inversion methods for satellite studies of the Earth's Radiation Budget: Development of algorithms for the ERBE Mission , 1986 .

[36]  Early radiometric validation results of the CERES Flight Model 1 and 2 instruments onboard NASA's Terra Spacecraft , 2002 .

[37]  D. Stammer,et al.  Decadal Sea Level Changes in the 50-Year GECCO Ocean Synthesis , 2008 .

[38]  K. Trenberth Using Atmospheric Budgets as a Constraint on Surface Fluxes , 1997 .

[39]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[40]  Bruce A. Wielicki,et al.  Cloud Identification for ERBE Radiative Flux Retrieval , 1989 .

[41]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[42]  D. F. Young,et al.  The validation of the 5-year Terra-based monthly CERES radiative flux and cloud product , 2006 .

[43]  Bruce A. Wielicki,et al.  Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument , 2001 .

[44]  Greg Kopp,et al.  The Total Irradiance Monitor (TIM): Science Results , 2005 .