Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations

The simulation of complex nonlinear engineering systems such as compressible fluid flows may be targeted to make more efficient and accurate the approximation of a specific (scalar) quantity of interest of the system. Putting aside modeling error and parametric uncertainty, this may be achieved by combining goal-oriented error estimates and adaptive anisotropic spatial mesh refinements. To this end, an elegant and efficient framework is the one of (Riemannian) metric-based adaptation where a goal-based a priori error estimation is used as indicator for adaptivity. This work proposes a novel extension of this approach to the case of aforementioned system approximations bearing a stochastic component. In this case, an optimisation problem leading to the best control of the distinct sources of errors is formulated in the continuous framework of the Riemannian metric space. Algorithmic developments are also presented in order to quantify and adaptively adjust the error components in the deterministic and stochastic approximation spaces. The capability of the proposed method is tested on various problems including a supersonic scramjet inlet subject to geometrical and operational parametric uncertainties. It is demonstrated to accurately capture discontinuous features of stochastic compressible flows impacting pressure-related quantities of interest, while balancing computational budget and refinements in both spaces.

[1]  Didier Lucor,et al.  Non intrusive iterative stochastic spectral representation with application to compressible gas dynamics , 2012, J. Comput. Phys..

[2]  Didier Lucor,et al.  Mono‐block and non‐matching multi‐block structured mesh adaptation based on aerodynamic functional total derivatives for RANS flow , 2017 .

[3]  Paul-Louis George,et al.  Creation of internal points in Voronoi's type method. Control adaptation , 1991 .

[4]  Jan Willem van Langenhove Adaptive control of deterministic and stochastic approximation errors in simulations of compressible flow , 2017 .

[5]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[6]  Frédéric Alauzet,et al.  High Order Sonic Boom Modeling by Adaptive Methods , 2009 .

[7]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[8]  Frédéric Alauzet,et al.  Metrix User Guide. Error Estimates and Mesh Control for Anisotropic Mesh Adaptation , 2009 .

[9]  Adrien Loseille,et al.  Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides : Application à la prédiction haute-fidélité du bang sonique , 2008 .

[10]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[11]  L. Mathelin,et al.  DUAL-BASED A POSTERIORI ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS , 2008 .

[12]  Frédéric Alauzet,et al.  Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries , 2017, J. Comput. Phys..

[13]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..

[14]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[15]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[16]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[17]  Karthik Duraisamy,et al.  Robust Grid Adaptation for Efficient Uncertainty Quantification , 2012 .

[18]  Frédéric Alauzet,et al.  A decade of progress on anisotropic mesh adaptation for computational fluid dynamics , 2016, Comput. Aided Des..

[19]  G. Grimmett,et al.  Probability and random processes , 2002 .

[20]  G E Karniadakis,et al.  The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Noel T. Clemens,et al.  An experimental investigation of supersonic inlet unstart , 2007 .

[22]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[23]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[24]  Jeroen A. S. Witteveen,et al.  Refinement Criteria for Simplex Stochastic Collocation with Local Extremum Diminishing Robustness , 2012, SIAM J. Sci. Comput..

[25]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[26]  Clint Dawson,et al.  A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions , 2011, SIAM J. Sci. Comput..

[27]  G. Iaccarino,et al.  Simplex Elements Stochastic Collocation in Higher-Dimensional Probability Spaces , 2010 .

[28]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[29]  Xiu Yang,et al.  Numerical solution of the Stratonovich- and Ito-Euler equations: Application to the stochastic piston problem , 2013, J. Comput. Phys..

[30]  Dongbin Xiu,et al.  Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..

[31]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[32]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[33]  Richard P. Dwight,et al.  Simplex-stochastic collocation method with improved scalability , 2016, J. Comput. Phys..

[34]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[35]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[36]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[37]  Jeroen A. S. Witteveen,et al.  Simplex Stochastic Collocation with Random Sampling and Extrapolation for Nonhypercube Probability Spaces , 2012, SIAM J. Sci. Comput..

[38]  David L. Darmofal,et al.  An optimization-based framework for anisotropic simplex mesh adaptation , 2012, J. Comput. Phys..

[39]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[40]  Tim Wildey,et al.  A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods , 2012, SIAM J. Matrix Anal. Appl..

[41]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[42]  Rémi Abgrall,et al.  Uncertainty Quantification for Hyperbolic Systems of Conservation Laws , 2017 .

[43]  Didier Lucor,et al.  A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments , 2012 .

[44]  A. Resmini,et al.  Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis , 2016 .

[45]  A. Belme,et al.  ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION , 2016 .

[46]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[47]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[48]  J. Tinsley Oden,et al.  Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems , 2010 .

[49]  Jeroen A. S. Witteveen,et al.  An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .

[50]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[51]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[52]  Richard P. Dwight,et al.  Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..

[53]  Frédéric Alauzet,et al.  Metric-Based Anisotropic Mesh Adaptation for Three-Dimensional Time-Dependent Problems Involving Moving Geometries , 2015 .

[54]  N. Hitchin A panoramic view of riemannian geometry , 2006 .

[55]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[56]  Michael Andrew Park,et al.  Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2002 .

[57]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[58]  Paul-Henry Cournède,et al.  Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .

[59]  Olivier Le Maitre,et al.  Dual-based {\itshape a posteriori} error estimate for stochastic finite element methods , 2007 .

[60]  Adrien Loseille,et al.  Anisotropic Adaptive Simulations in Aerodynamics , 2010 .

[61]  Jeroen A. S. Witteveen,et al.  Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification , 2013, J. Comput. Phys..

[62]  Anca Belme,et al.  Aérodynamique instationnaire et méthode adjointe , 2011 .

[63]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[64]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[65]  Jeroen A. S. Witteveen,et al.  Subcell resolution in simplex stochastic collocation for spatial discontinuities , 2013, J. Comput. Phys..

[66]  Tim Wildey,et al.  Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.

[67]  J. Wagner,et al.  Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow , 2009 .

[68]  Adrien Loseille,et al.  Anisotropic goal‐oriented error analysis for a third‐order accurate CENO Euler discretization , 2018 .