Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations
暂无分享,去创建一个
Frédéric Alauzet | Anca Belme | Didier Lucor | J. Van Langenhove | D. Lucor | F. Alauzet | A. Belme | J. V. Langenhove
[1] Didier Lucor,et al. Non intrusive iterative stochastic spectral representation with application to compressible gas dynamics , 2012, J. Comput. Phys..
[2] Didier Lucor,et al. Mono‐block and non‐matching multi‐block structured mesh adaptation based on aerodynamic functional total derivatives for RANS flow , 2017 .
[3] Paul-Louis George,et al. Creation of internal points in Voronoi's type method. Control adaptation , 1991 .
[4] Jan Willem van Langenhove. Adaptive control of deterministic and stochastic approximation errors in simulations of compressible flow , 2017 .
[5] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[6] Frédéric Alauzet,et al. High Order Sonic Boom Modeling by Adaptive Methods , 2009 .
[7] George E. Karniadakis,et al. Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..
[8] Frédéric Alauzet,et al. Metrix User Guide. Error Estimates and Mesh Control for Anisotropic Mesh Adaptation , 2009 .
[9] Adrien Loseille,et al. Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides : Application à la prédiction haute-fidélité du bang sonique , 2008 .
[10] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[11] L. Mathelin,et al. DUAL-BASED A POSTERIORI ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS , 2008 .
[12] Frédéric Alauzet,et al. Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries , 2017, J. Comput. Phys..
[13] Frédéric Alauzet,et al. Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..
[14] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[15] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[16] Frédéric Alauzet,et al. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..
[17] Karthik Duraisamy,et al. Robust Grid Adaptation for Efficient Uncertainty Quantification , 2012 .
[18] Frédéric Alauzet,et al. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics , 2016, Comput. Aided Des..
[19] G. Grimmett,et al. Probability and random processes , 2002 .
[20] G E Karniadakis,et al. The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[21] Noel T. Clemens,et al. An experimental investigation of supersonic inlet unstart , 2007 .
[22] C. Gruau,et al. 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .
[23] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[24] Jeroen A. S. Witteveen,et al. Refinement Criteria for Simplex Stochastic Collocation with Local Extremum Diminishing Robustness , 2012, SIAM J. Sci. Comput..
[25] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[26] Clint Dawson,et al. A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions , 2011, SIAM J. Sci. Comput..
[27] G. Iaccarino,et al. Simplex Elements Stochastic Collocation in Higher-Dimensional Probability Spaces , 2010 .
[28] J. Anderson,et al. Fundamentals of Aerodynamics , 1984 .
[29] Xiu Yang,et al. Numerical solution of the Stratonovich- and Ito-Euler equations: Application to the stochastic piston problem , 2013, J. Comput. Phys..
[30] Dongbin Xiu,et al. Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..
[31] Frédéric Alauzet,et al. High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..
[32] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[33] Richard P. Dwight,et al. Simplex-stochastic collocation method with improved scalability , 2016, J. Comput. Phys..
[34] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[35] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[36] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[37] Jeroen A. S. Witteveen,et al. Simplex Stochastic Collocation with Random Sampling and Extrapolation for Nonhypercube Probability Spaces , 2012, SIAM J. Sci. Comput..
[38] David L. Darmofal,et al. An optimization-based framework for anisotropic simplex mesh adaptation , 2012, J. Comput. Phys..
[39] George E. Karniadakis,et al. The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..
[40] Tim Wildey,et al. A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods , 2012, SIAM J. Matrix Anal. Appl..
[41] N. Ayache,et al. Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.
[42] Rémi Abgrall,et al. Uncertainty Quantification for Hyperbolic Systems of Conservation Laws , 2017 .
[43] Didier Lucor,et al. A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments , 2012 .
[44] A. Resmini,et al. Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis , 2016 .
[45] A. Belme,et al. ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION , 2016 .
[46] Frédéric Alauzet,et al. Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..
[47] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[48] J. Tinsley Oden,et al. Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems , 2010 .
[49] Jeroen A. S. Witteveen,et al. An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .
[50] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[51] Frédéric Alauzet,et al. Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .
[52] Richard P. Dwight,et al. Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..
[53] Frédéric Alauzet,et al. Metric-Based Anisotropic Mesh Adaptation for Three-Dimensional Time-Dependent Problems Involving Moving Geometries , 2015 .
[54] N. Hitchin. A panoramic view of riemannian geometry , 2006 .
[55] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[56] Michael Andrew Park,et al. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2002 .
[57] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[58] Paul-Henry Cournède,et al. Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .
[59] Olivier Le Maitre,et al. Dual-based {\itshape a posteriori} error estimate for stochastic finite element methods , 2007 .
[60] Adrien Loseille,et al. Anisotropic Adaptive Simulations in Aerodynamics , 2010 .
[61] Jeroen A. S. Witteveen,et al. Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification , 2013, J. Comput. Phys..
[62] Anca Belme,et al. Aérodynamique instationnaire et méthode adjointe , 2011 .
[63] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[64] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[65] Jeroen A. S. Witteveen,et al. Subcell resolution in simplex stochastic collocation for spatial discontinuities , 2013, J. Comput. Phys..
[66] Tim Wildey,et al. Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.
[67] J. Wagner,et al. Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow , 2009 .
[68] Adrien Loseille,et al. Anisotropic goal‐oriented error analysis for a third‐order accurate CENO Euler discretization , 2018 .