Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart.

UNLABELLED This study compares the ability of 241Am and 99mTc to estimate 201Tl attenuation maps while minimizing the loss in the precision of the emission data. METHODS A triple-head SPECT system with either an 241Am or 99mTc line source opposite a fan-beam collimator was used to estimate attenuation maps of the thorax of an anthropomorphic phantom. Linear attenuation values at 75 keV for 201Tl were obtained by linear extrapolation of the measured values from 241Am and 99mTc. RESULTS Lung and soft-tissue estimates from both isotopes showed excellent agreement to within 3% of the measured values for 201Tl. Linear extrapolation did not yield satisfactory estimates for bone from either 241Am (+11.7%) or 99mTc (-15.3%). Patient data were used to estimate the dependence of crosstalk on patient size. Contamination from 201Tl in the transmission window was 5-6 times greater for 241Am compared to 99mTc, while the contamination in the 201Tl data in the transmission-emission detector head (head 1) was 4-5 times greater for 99mTc compared to 241Am. No contamination was detected in the 201Tl emission data of heads 2 and 3 from 241Am, whereas the 99mTc produced a small crosstalk component giving a signal-to-crosstalk ratio near 20:1. Measurements with a fillable chest phantom estimated the mean error introduced into the data from the removal of the crosstalk. CONCLUSION Based on the measured data, 241Am is a suitable transmission source for simultaneous transmission-emission tomography for 201Tl cardiac studies.