Liquid Crystal-Embedded Tilted Fiber Grating Electric Field Intensity Sensor

We propose and experimentally demonstrate a novel electric field intensity sensor by using a tilted fiber Bragg grating (TFBG) interacting with liquid crystal. The TFBG is surrounded by the liquid crystal whose effective refractive index changes over the range from 1.53 to 1.70 in response to the strength of external electric fields. The guiding properties of cladding modes excited in the TFBG are, therefore, sensitive to the external electric field. By monitoring the amplitude of a selected cladding mode resonance, we measured electric field strength over a range of 1.0–4.8 kV/cm. The sensor demonstrated better than 99% linearity with a sensitivity of 0.287 dB/kV/cm. Temperature cross-sensitivity can be effectively reduced by referenced to the core mode of the proposed TFBG sensor.

[1]  Bai-Ou Guan,et al.  Fiber-optic vector vibroscope. , 2012, Optics letters.

[2]  L. Blinov,et al.  Structure and Properties of Liquid Crystals , 2010 .

[3]  K. Bohnert,et al.  Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation , 1998 .

[4]  J. Albert,et al.  Polarization-Assisted Fiber Bragg Grating Sensors: Tutorial and Review , 2017, Journal of Lightwave Technology.

[5]  Shin-Tson Wu,et al.  Temperature effect on liquid crystal refractive indices , 2004 .

[6]  Toemsak Srikhirin,et al.  Fiber optic electric field sensors using polymer-dispersed liquid crystal coatings and evanescent field interactions , 2000 .

[7]  Silvano Donati,et al.  Magneto-optical fibre sensors for electrical industry: analysis of performances , 1988 .

[8]  Tuan Guo,et al.  Tilted Fiber Bragg Grating Sensors , 2018 .

[9]  Yuliya Semenova,et al.  Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements. , 2011, Applied optics.

[10]  C. Bailey,et al.  Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor , 2004 .

[11]  W. Bock,et al.  Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings , 2012, Journal of Lightwave Technology.

[12]  G Farrell,et al.  Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber , 2011, IEEE Photonics Technology Letters.

[13]  J. Albert,et al.  High Resolution NIR TFBG-Assisted Biochemical Sensors , 2015, Journal of Lightwave Technology.

[14]  L. Blinov Optics and Electric Field Effects in Nematic and Smectic A Liquid Crystals , 2011 .

[15]  M. Chychłowski,et al.  Liquid crystal alignment in cylindrical microcapillaries , 2012 .

[16]  Vittorio M. N. Passaro,et al.  Electromagnetic field photonic sensors , 2006 .

[17]  Bai-Ou Guan,et al.  [INVITED] Tilted fiber grating mechanical and biochemical sensors ☆ , 2016 .

[18]  T. Wolinski,et al.  Escaped Radial and Planar Liquid Crystal Orientation Inside Capillaries , 2012 .

[19]  Yan-qing Lu,et al.  Fiber-Optic Pressure Sensor Based on Tunable Liquid Crystal Technology , 2010, IEEE Photonics Journal.

[20]  Jun Zhang,et al.  Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation , 2014 .

[21]  Qi Guo,et al.  Sensors at Your Fibre Tips: A Novel Liquid Crystal- Based Photonic Transducer for Sensing Systems , 2013, Journal of Lightwave Technology.

[22]  Fan Zhang,et al.  Polarization Effects in Tilted Fiber Bragg Grating Refractometers , 2010, Journal of Lightwave Technology.

[23]  Hao Zhang,et al.  Tilted fiber Bragg gratings: Principle and sensing applications , 2011 .

[24]  J. Albert,et al.  Compact fiber-optic vector inclinometer. , 2010, Optics letters.

[25]  T. Zhu,et al.  High Voltage Sensing Based on Fiber Fabry–Perot Interferometer Driven by Electric Field Forces , 2014, Journal of Lightwave Technology.

[26]  Edward Nowinowski-Kruszelnicki,et al.  Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal , 2009 .

[27]  N. Kukutsu,et al.  Sensitivity-Stabilized Fiber-Mounted Electrooptic Probe for Electric Field Mapping , 2008, Journal of Lightwave Technology.

[28]  Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement. , 2011, Optics express.

[29]  Tuan Guo,et al.  Power-Referenced and Temperature-Calibrated Optical Fiber Refractometer , 2008, IEEE Photonics Technology Letters.

[30]  Qiang Wu,et al.  Plasmonic fiber-optic vector magnetometer , 2016 .

[31]  G. Laffont,et al.  Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica , 2001 .

[32]  Y. Semenova,et al.  All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers , 2011 .

[33]  Toshihiko Yoshino,et al.  Optical voltage sensor based on electrooptic crystal multiplier , 2002 .

[34]  Kun-Lin Yang,et al.  Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[35]  Hwa-Yaw Tam,et al.  Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. , 2009, Optics express.

[36]  D. Thomson,et al.  Optical fiber refractometer using narrowband cladding-mode resonance shifts. , 2007, Applied optics.