Use of dynamic-clamp as a tool to reveal the computational properties of single neurons embedded in cortical circuits

[1]  Pierre Giraud,et al.  Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices , 2008, Nature Protocols.

[2]  Romain Brette,et al.  High-Resolution Intracellular Recordings Using a Real-Time Computational Model of the Electrode , 2007, Neuron.

[3]  Astrid A Prinz,et al.  Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. , 2009, Journal of neurophysiology.

[4]  A. Prinz,et al.  Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. , 2004, Biophysical journal.

[5]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[6]  S. Royer,et al.  Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. , 2001, Journal of neurophysiology.

[7]  H. Robinson,et al.  Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons , 1993, Journal of Neuroscience Methods.

[8]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[9]  J. Borst,et al.  In vivo dynamic clamp study of I(h) in the mouse inferior colliculus. , 2010, Journal of neurophysiology.

[10]  Farzan Nadim,et al.  Synaptic Dynamics Do Not Determine Proper Phase of Activity in a Central Pattern Generator , 2005, The Journal of Neuroscience.

[11]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[12]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[13]  C. Wilson,et al.  Capacitance compensation and bridge balance adjustment in intracellular recording from dendritic neurons , 1989, Journal of Neuroscience Methods.

[14]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[15]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[16]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[17]  Michele Giugliano,et al.  The Impact of Input Fluctuations on the Frequency–Current Relationships of Layer 5 Pyramidal Neurons in the Rat Medial Prefrontal Cortex , 2007, The Journal of Neuroscience.

[18]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[19]  Areles Molleman,et al.  Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology , 2002 .

[20]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[21]  Arnold R Kriegstein,et al.  GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation , 2008, The Journal of Neuroscience.

[22]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[23]  Johannes J. Letzkus,et al.  Dendritic patch-clamp recording , 2006, Nature Protocols.

[24]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[25]  Ronald Wilders,et al.  Dynamic clamp: a powerful tool in cardiac electrophysiology , 2006, The Journal of physiology.

[26]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[27]  Tim Gollisch,et al.  From response to stimulus: adaptive sampling in sensory physiology , 2007, Current Opinion in Neurobiology.

[28]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[29]  Avner Wallach,et al.  A Generic Framework for Real-Time Multi-Channel Neuronal Signal Analysis, Telemetry Control, and Sub-Millisecond Latency Feedback Generation , 2010, Front. Neurosci..

[30]  Arnold R Kriegstein,et al.  Blind patch clamp recordings in embryonic and adult mammalian brain slices , 2006, Nature Protocols.

[31]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[32]  William W. Lytton Optimizing Synaptic Conductance Calculation for Network Simulations , 1996, Neural Computation.

[33]  L. Geddes Electrodes and the measurement of bioelectric events , 1972 .

[34]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[35]  Paul H M Kullmann,et al.  Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. , 2004, Journal of neurophysiology.

[36]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[37]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[38]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[39]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[40]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[41]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[42]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[43]  Michele Giugliano,et al.  Fast Calculation of Short-Term Depressing Synaptic Conductances , 1999, Neural Computation.

[44]  Allen I. Selverston,et al.  StdpC: A modern dynamic clamp , 2006, Journal of Neuroscience Methods.

[45]  B. Gähwiler,et al.  Target cell-specific modulation of transmitter release at terminals from a single axon. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Robert J Butera,et al.  MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments , 2004, Journal of Neuroscience Methods.

[47]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[48]  G. L. Masson,et al.  Feedback inhibition controls spike transfer in hybrid thalamic circuits , 2002, Nature.

[49]  Eve Marder,et al.  The dynamic clamp comes of age , 2004, Trends in Neurosciences.

[50]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[51]  W. Gerstner,et al.  Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. , 2008, Journal of neurophysiology.

[52]  A.J. Preyer,et al.  Causes of Transient Instabilities in the Dynamic Clamp , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[53]  Sten Grillner,et al.  Global Neuroinformatics: The International Neuroinformatics Coordinating Facility , 2007, The Journal of Neuroscience.

[54]  T. Freund,et al.  Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase , 1984, Brain Research.

[55]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[56]  A. Bacci,et al.  Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons , 2006, Neuron.

[57]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[58]  D. Prince,et al.  Major Differences in Inhibitory Synaptic Transmission onto Two Neocortical Interneuron Subclasses , 2003, The Journal of Neuroscience.

[59]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[60]  Gillespie,et al.  Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[62]  Peter Jonas,et al.  Patch-clamp recording from mossy fiber terminals in hippocampal slices , 2006, Nature Protocols.

[63]  Stefano Fusi,et al.  The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. , 2008, Cerebral cortex.

[64]  Vincenzo Crunelli,et al.  NeuReal: An interactive simulation system for implementing artificial dendrites and large hybrid networks , 2008, Journal of Neuroscience Methods.

[65]  Michael Okun,et al.  The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats , 2010, The Journal of Neuroscience.

[66]  Lorin S Milescu,et al.  Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. , 2008, Biophysical journal.