Two-Point Correlation Function of High-Redshift Objects: An Explicit Formulation on a Light-Cone Hypersurface
暂无分享,去创建一个
[1] Y. Jing,et al. A Possible Bias Model for Quasars , 1998, astro-ph/9804106.
[2] J. Peacock,et al. Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.
[3] T. Kitayama,et al. Cosmological implications of number counts of clusters of galaxies: log N - log S in x-ray and submm bands , 1997, astro-ph/9708088.
[4] M. Giavalisco,et al. A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.
[5] S. Croom,et al. QSO clustering - III. Clustering in the Large Bright Quasar Survey and evolution of the QSO correlation function , 1996 .
[6] A. Hamilton,et al. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .
[7] Y. Jing,et al. Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.
[8] J. Fry. The Evolution of Bias , 1996 .
[9] S. White,et al. An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.
[10] S. White,et al. High-order correlations of peaks and haloes: a step towards understanding galaxy biasing , 1996, astro-ph/9603039.
[11] Y. Suto,et al. Strong Gravitational Lensing and Velocity Function as Tools to Probe Cosmological Parameters. , 1996, astro-ph/9612074.
[12] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[13] S. Cristiani,et al. Quasar Clustering: Evidence for an Increase with Redshift and Implications for the Nature of Active Galactic Nuclei , 1997, astro-ph/9711048.
[14] R. Narayan,et al. The influence of core radius on gravitational lensing by elliptical lenses , 1993 .
[15] I. Szapudi,et al. Light-Cone Effect on Higher Order Clustering in Redshift Surveys , 1997, astro-ph/9708121.
[16] T. Matsubara,et al. Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.
[17] J. A. PeacockS.J. Dodds,et al. Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.
[18] A. Hamilton. Linear redshift distortions: A Review , 1997, astro-ph/9708102.
[19] Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.
[20] T. Kitayama,et al. Constraints on the Fluctuation Amplitude and Density Parameter from X-Ray Cluster Number Counts , 1997, astro-ph/9702017.
[21] Small-scale fluctuations in the cosmic x-ray background: A power spectrum approach , 1998, astro-ph/9807225.
[22] T. Matsubara,et al. Cosmological Redshift Distortion: Deceleration, Bias, and Density Parameters from Future Redshift Surveys of Galaxies , 1997, astro-ph/9706034.
[23] R. P. Soni,et al. Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .
[24] T. Shanks,et al. QSO clustering – I. Optical surveys in the redshift range 0.3 < z < 2.2 , 1994 .
[25] N. B. Suntzeff,et al. Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae , 1997 .
[26] M. J. Page,et al. Clustering of X-ray selected active galactic nuclei , 1998, astro-ph/9804314.
[27] O. Lahav,et al. The X-ray background as a probe of density fluctuations at high redshift , 1996, astro-ph/9610037.
[28] L. Moscardini,et al. Redshift evolution of clustering , 1996, astro-ph/9608004.
[29] Bruce A. Peterson,et al. The evolution of optically selected QSOs – II , 1987 .