Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations with Correlated Inputs

This paper considers large-scale stochastic simulations with correlated inputs having normal-to-anything (NORTA) distributions with arbitrary continuous marginal distributions. Examples of correlated inputs include processing times of workpieces across several workcenters in manufacturing facilities and product demands and exchange rates in global supply chains. Our goal is to obtain mean performance measures and confidence intervals for simulations with such correlated inputs by accounting for the uncertainty around the NORTA distribution parameters estimated from finite historical input data. This type of uncertainty is known as the parameter uncertainty in the discrete-event stochastic simulation literature. We demonstrate how to capture parameter uncertainty with a Bayesian model that uses Sklar's marginal-copula representation and Cooke's copula-vine specification for sampling the parameters of the NORTA distribution. The development of such a Bayesian model well suited for handling many correlated inputs is the primary contribution of this paper. We incorporate the Bayesian model into the simulation replication algorithm for the joint representation of stochastic uncertainty and parameter uncertainty in the mean performance estimate and the confidence interval. We show that our model improves both the consistency of the mean line-item fill-rate estimates and the coverage of the confidence intervals in multiproduct inventory simulations with correlated demands.

[1]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[2]  Young Sook Son,et al.  Bayesian Estimation of the Two-Parameter Gamma Distribution , 2006 .

[3]  R. Cheng,et al.  Two-point methods for assessing variability in simulation output , 1998 .

[4]  H. Joe Multivariate models and dependence concepts , 1998 .

[5]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[6]  Panos Kouvelis,et al.  The structure of global supply chains , 2007 .

[7]  T. Bedford,et al.  Probabilistic Risk Analysis: Foundations and Methods , 2001 .

[8]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[9]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[10]  M. Kendall,et al.  An Introduction to the Theory of Statistics. , 1911 .

[11]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[12]  T. Louis,et al.  Bayes and Empirical Bayes Methods for Data Analysis. , 1997 .

[13]  Averill Law,et al.  Simulation Modeling and Analysis (McGraw-Hill Series in Industrial Engineering and Management) , 2006 .

[14]  M. Daniels A prior for the variance in hierarchical models , 1999 .

[15]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[16]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling: Kurowicka/Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[17]  B. Schweizer,et al.  Thirty Years of Copulas , 1991 .

[18]  Panagiotis Kouvelis,et al.  The Structure of Global Supply Chains: The Design and Location of Sourcing, Production, and Distribution Facility Networks for Global Markets , 2007, Found. Trends Technol. Inf. Oper. Manag..

[19]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[20]  Dongchu Sun,et al.  Objective priors for the bivariate normal model , 2008, 0804.0987.

[21]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[22]  Susan H. Xu Structural Analysis of a Queueing System with Multiclasses of Correlated Arrivals and Blocking , 1999, Oper. Res..

[23]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[24]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty , 1997 .

[25]  Lee W. Schruben,et al.  Resampling methods for input modeling , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[26]  R. Cooke,et al.  A parameterization of positive definite matrices in terms of partial correlation vines , 2003 .

[27]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[28]  Y. L. Tong The multivariate normal distribution , 1989 .

[29]  L. M. M.-T. Theory of Probability , 1929, Nature.

[30]  Russell C. H. Cheng,et al.  Calculation of confidence intervals for simulation output , 2004, TOMC.

[31]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[32]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[33]  Stephen E. Chick Steps to implement Bayesian input distribution selection , 1999, WSC '99.

[34]  Merrill W. Liechty,et al.  Bayesian correlation estimation , 2004 .

[35]  Bahar Biller,et al.  Chapter 5 Multivariate Input Processes , 2006, Simulation.

[36]  Stephen E. Chick,et al.  Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty , 2001, Oper. Res..

[37]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[38]  James R. Wilson,et al.  Accounting for Parameter Uncertainty in Simulation Input Modeling , 2003 .

[39]  S. Chick Bayesian Analysis For Simulation Input And Output , 1997, Winter Simulation Conference Proceedings,.

[40]  Faker Zouaoui,et al.  Accounting for input-model and input-parameter uncertainties in simulation , 2004 .

[41]  Edward I. George,et al.  Bayesian Model Selection , 2006 .

[42]  R. Nelsen An Introduction to Copulas , 1998 .

[43]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[44]  Adrian E. Raftery,et al.  Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance , 1995 .