A Multiple Kernels Interval Type-2 Possibilistic C-Means

In this paper, we propose multiple kernels-based interval type-2 possibilistic c-Means (MKIT2PCM) by using the kernel approach to possibilistic clustering. Kernel-based fuzzy clustering has exhibited quality of clustering results in comparison with “routine” fuzzy clustering algorithms like fuzzy c-Means (FCM) or possibilistic c-Means (PCM) not only noisy data sets but also overlapping between prototypes. Gaussian kernels are suitable for these cases. Interval type-2 fuzzy sets have shown the advantages in handling uncertainty. In this study, multiple kernel method are combined into interval type-2 possibilistic c-Means (IT2PCM) to produce a variant of IT2PCM, called multiple kernels interval type-2 possibilistic c-Means (MKIT2PCM). Experiments on various data-sets with validity indexes show the performance of the proposed algorithms.

[1]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[2]  Oscar Castillo,et al.  Fuzzy granular gravitational clustering algorithm for multivariate data , 2014, Inf. Sci..

[3]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[4]  Oscar Castillo,et al.  Designing Type-2 Fuzzy Systems Using the Interval Type-2 Fuzzy C-Means Algorithm , 2014, Recent Advances on Hybrid Approaches for Designing Intelligent Systems.

[5]  Samarjit Das Pattern Recognition using the Fuzzy c-means Technique , 2013 .

[6]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[7]  Witold Pedrycz,et al.  Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms , 2015, Fuzzy Sets Syst..

[8]  Oscar Castillo,et al.  Interval type-2 fuzzy clustering for membership function generation , 2013, 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA).

[9]  Bin Zhao,et al.  Multiple Kernel Clustering , 2009, SDM.

[10]  Francesco Masulli,et al.  Applying the Possibilistic c-Means Algorithm in Kernel-Induced Spaces , 2010, IEEE Transactions on Fuzzy Systems.

[11]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[12]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[13]  Frank Chung-Hoon Rhee,et al.  Interval type-2 approach to kernel possibilistic C-means clustering , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[14]  Yuchi Kanzawa,et al.  Sequential Cluster Extraction Using Power-Regularized Possibilistic c-Means , 2015, J. Adv. Comput. Intell. Intell. Informatics.