Multigrid inversion algorithms for Poisson noise model-based tomographic reconstruction

A multigrid inversion approach is proposed to solve Poisson noise model-based inverse problems. The algorithm works by moving up and down in resolution with a set of coarse scale cost functions, which incorporates a coarse scale Poisson mean defined in low resolution data and image spaces. Applications of the approach to Bayesian reconstruction algorithms in transmission and emission tomography are presented. Simulation results indicate that the proposed multigrid approach results in significant improvement in convergence speed compared to the fixed-grid iterative coordinate descent (ICD) method.

[1]  Charles A. Bouman,et al.  Nonlinear multigrid optimization for Bayesian diffusion tomography , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[2]  Ken D. Sauer,et al.  A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..

[3]  Achi Brandt,et al.  Multigrid for Atmospheric Data Assimilation: Analysis , 2003 .

[4]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[5]  Van Emden Henson,et al.  Multilevel Image Reconstruction with Natural Pixels , 1996, SIAM J. Sci. Comput..

[6]  Ken D. Sauer,et al.  Nonlinear multigrid methods of optimization in Bayesian tomographic image reconstruction , 1992, Optics & Photonics.

[7]  Ken D. Sauer,et al.  A unified approach to statistical tomography using coordinate descent optimization , 1996, IEEE Trans. Image Process..

[8]  Ulrich Rüde,et al.  Multilevel Methods for Inverse Bioelectric Field Problems , 2002 .

[9]  A. Brandt,et al.  Two multigrid algorithms for an inverse problem in Electrical Impedance Tomopraphy , 2004 .

[10]  Joseph A. O'Sullivan,et al.  Alternating minimization multigrid algorithms for transmission tomography , 2004, IS&T/SPIE Electronic Imaging.

[11]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[12]  Kevin J. Webb,et al.  Adaptive nonlinear multigrid inversion with applications to Bayesian optical diffusion tomography , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[13]  Liliana Borcea A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency , 2001 .

[14]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[15]  Charles A. Bouman,et al.  A general framework for nonlinear multigrid inversion , 2005, IEEE Transactions on Image Processing.

[16]  J. G. Wade,et al.  Multigrid solution of a linearized, regularized least-squares problem in electrical impedance tomography , 1993 .

[17]  Charles A. Bouman,et al.  Nonlinear multigrid algorithms for Bayesian optical diffusion tomography , 2001, IEEE Trans. Image Process..

[18]  E. Levitan,et al.  A Maximum a Posteriori Probability Expectation Maximization Algorithm for Image Reconstruction in Emission Tomography , 1987, IEEE Transactions on Medical Imaging.