Coarsening of carbon black supported Pt nanoparticles in hydrogen

This study addresses coarsening mechanisms of Pt nanoparticles supported on carbon black in hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20% H2/Ar while ramping up the temperature to almost 1000 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in a hydrogen environment are stable up to ca. 800 °C at a heating rate of 10 °C min−1. The coarsening above this temperature is dominated by the particle migration and coalescence mechanism. However, for agglomerated Pt nanoparticles, coalescence events were observed already above 200 °C. The temperature-dependency of particle sizes and the observed migration distances are described and found to be consistent with simple early models for the migration and coalescence.

[1]  Jiajun Wang,et al.  Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room‐Temperature Electron Reduction for Oxygen Reduction Reaction , 2017, Advanced science.

[2]  D. Farrusseng,et al.  Platinum nanoparticles entrapped in zeolite nanoshells as active and sintering-resistant arene hydrogenation catalysts , 2015 .

[3]  L. Schultz,et al.  Atomic surface diffusion on Pt nanoparticles quantified by high-resolution transmission electron microscopy. , 2014, Micron.

[4]  J. Wagner,et al.  Catalysts under Controlled Atmospheres in the Transmission Electron Microscope , 2014 .

[5]  Qunjie Xu,et al.  A Review of Pt-Based Anode Catalysts Preparation for Direct Ethanol Fuel Cell , 2013 .

[6]  R. Schneider,et al.  Coarsening of Pt nanoparticles on amorphous carbon film , 2013 .

[7]  A. Datye,et al.  In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects. , 2012, Physical chemistry chemical physics : PCCP.

[8]  Wee Sun Lee,et al.  Preparation of carbon-supported nanosegregated Pt alloy catalysts for the oxygen reduction reaction using a silica encapsulation process to inhibit the sintering effect during heat treatment , 2012 .

[9]  Ib Chorkendorff,et al.  Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles , 2012 .

[10]  S. Dahl,et al.  Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM , 2011 .

[11]  A. Mohamad,et al.  Review of Parameters Affecting Performance of (Pt/C) Electrode for Proton Exchange Membrane Fuel Cells (Pemfcs) , 2011 .

[12]  Kenta Yoshida,et al.  In-situ heating studies of gold nanoparticles in an aberration corrected transmission electron microscope , 2010 .

[13]  G. Somorjai,et al.  Nanoscale advances in catalysis and energy applications. , 2010, Nano letters.

[14]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[15]  J. Grunwaldt,et al.  Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles. , 2010, Angewandte Chemie.

[16]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[17]  D. Goodman,et al.  Sintering of Au Particles Supported on TiO2(110) during CO Oxidation , 2009 .

[18]  H. Shinjoh,et al.  Sintering and redispersion behavior of Pt on Pt/MgO , 2008 .

[19]  Wangyu Hu,et al.  Atomistic simulation of Pt trimer on Pt(1 1 1) surface , 2007 .

[20]  A. Datye,et al.  Particle Size Distributions in Heterogeneous Catalysts: What Do They Tell Us About the Sintering Mechanism? , 2006 .

[21]  P. Crozier,et al.  Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts , 2005 .

[22]  S. J. Chen,et al.  Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. , 2004, Optics letters.

[23]  F. Ross,et al.  Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface , 2003, Nature materials.

[24]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[25]  R. Antón,et al.  In situTEM evaluation of the growth kinetics of Au particles on highly oriented pyrolithic graphite at elevated temperatures , 2000 .

[26]  Joost W. M. Frenken,et al.  Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110) , 2000 .

[27]  K. Morgenstern,et al.  Local Correlation during Ostwald ripening of two-dimensional islands on Ag(111) , 1999 .

[28]  G. Ehrlich,et al.  Diffusion and dissociation of platinum clusters on Pt(111) , 1999 .

[29]  J. Nørskov,et al.  Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen , 1999, Nature.

[30]  Theis,et al.  Ostwald ripening of two-dimensional islands on Si(001). , 1996, Physical review. B, Condensed matter.

[31]  P. Harris Growth and structure of supported metal catalyst particles , 1995 .

[32]  C. H. Bartholomew Sintering kinetics of supported metals: new perspectives from a unifying GPLE treatment , 1993 .

[33]  B. Kasemo,et al.  Rapid Sintering in NO of Nanometer-Sized Pt Particles on γ-Al2O3 Observed by CO Temperature-Programmed Desorption and Transmission Electron Microscopy , 1993 .

[34]  Model catalyst studies of supported metal sintering and redispersion kinetics , 1993 .

[35]  L. Genovese,et al.  Redispersion of platinum on Pt/Al2O3 model catalyst in oxygen studied by transmission electron microscopy , 1990 .

[36]  R. Schlögl,et al.  Sintering of platinum-black in hydrogen: Morphology and catalytic activity , 1989 .

[37]  Z. Paâl,et al.  Effect of Hydrogen on the Sintering of Pt-Black Catalyst and on its Activity in Skeletal Hydrocarbon Reactions* , 1989 .

[38]  Young Gul Kim,et al.  Redispersion of supported platinum catalysts , 1984 .

[39]  K. Hayek,et al.  Electron microscopy of PtAl2O3 model catalysts: II. Sintering in atmospheres of H2, O2 and Ar , 1981 .

[40]  H. Glassl Electron microscopy of Pt/Al2O3 model catalysts: Artifacts in sample preparation , 1980 .

[41]  E. Ruckenstein,et al.  Redispersion of platinum crystallites supported on alumina—Role of wetting , 1979 .

[42]  L. Schmidt,et al.  Morphology and sintering of Pt crystallites on amorphous SiO2 , 1978 .

[43]  R. Baker,et al.  Surface area stabilization of IrAl2O3 catalysts by CaO, SrO, and BaO under oxygen atmospheres: Implications on the mechanism of catalyst sintering and redispersion , 1978 .

[44]  S. Wanke,et al.  The sintering of supported metal catalysts: II. Comparison of sintering rates of supported Pt, Ir, and Rh catalysts in hydrogen and oxygen , 1978 .

[45]  S. Wanke Comments on the sintering mechanism of supported metal catalysts , 1977 .

[46]  Robert A. Buhrman,et al.  Size distributions for supported metal catalysts: Coalescence growth versus ostwald ripening , 1976 .

[47]  K. Heinemann,et al.  Direct observation of small cluster mobility and ripening , 1976 .

[48]  P. Flynn,et al.  Experimental studies of sintering of supported platinum catalysts , 1975 .

[49]  N. A. Gjostein,et al.  Supported metal crystallites , 1975 .

[50]  P. S. Harris,et al.  Direct observation of particle mobility on a surface in a gaseous environment , 1974 .

[51]  P. Flynn,et al.  A model of supported metal catalyst sintering: II. Application of model , 1974 .

[52]  E. D. Hondros,et al.  A study of grain-boundary grooving at the platinum/alumina interface , 1971 .

[53]  R. C. Bansal,et al.  Studies in surface chemistry of carbon blacks Part II. Surface acidity in relation to chemisorbed oxygen , 1964 .

[54]  R. C. Bansal,et al.  Studies in surface chemistry of carbon blacks. Part I. High temperature evacuations , 1964 .

[55]  E. Germagnoli,et al.  Self-diffusion in platinum , 1962 .

[56]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[57]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .