Unsupervised Image Clustering Using the Information Bottleneck Method

A new method for unsupervised image category clustering is presented, based on a continuous version of a recently introduced information theoretic principle, the information bottleneck (IB). The clustering method is based on hierarchical grouping: Utilizing a Gaussian mixture model, each image in a given archive is first represented as a set of coherent regions in a selected feature space. Images are next grouped such that the mutual information between the clusters and the image content is maximally preserved. The appropriate number of clusters can be determined directly from the IB principle. Experimental results demonstrate the performance of the proposed clustering method on a real image database.