Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing

We demonstrate that dark plasmon modes of cavity-shaped plasmonic structures made of metallic nanowires can be excited by local dipoles induced via second-harmonic generation. The optical properties of these plasmonic cavity modes are thoroughly characterized by using a numerical method that provides a complete description of the optical field at both the fundamental frequency and the second harmonic. In particular, we show that the optical properties of these plasmonic cavity modes are strongly dependent on the geometry of the plasmonic cavity and the material parameters of its constituents. This enhanced sensitivity of dark plasmonic cavity modes to the surrounding dielectric environment can find applications in plasmonic sensing. Specifically, this novel approach to sensing reveals that detection limits of 10(-5) refractive index units can readily be achieved by using wavelength-sized plasmonic devices.

[1]  Jun Kondoh,et al.  Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes , 2005 .

[2]  F. Chien,et al.  Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating. , 2007, Biosensors & bioelectronics.

[3]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[4]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[5]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[6]  G. Schatz,et al.  Ultrafast pulse excitation of a metallic nanosystem containing a Kerr nonlinear material , 2006 .

[7]  Charles T. Rogers,et al.  Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum , 2004 .

[8]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[9]  Nicolae C. Panoiu,et al.  Subwavelength Nonlinear Plasmonic Nanowire , 2004 .

[10]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[11]  C. G. Biris,et al.  Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities. , 2010, Optics express.

[12]  C C Davis,et al.  Single-photon tunneling via localized surface plasmons. , 2002, Physical review letters.

[13]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[14]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[15]  D. Felbacq,et al.  Scattering by a random set of parallel cylinders , 1994 .

[16]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[17]  Nicolae C. Panoiu,et al.  Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires , 2010 .

[18]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[19]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[20]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[21]  Nicolae C. Panoiu,et al.  Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures , 2007 .

[22]  Sudhanshu S. Jha,et al.  OPTICAL SECOND HARMONIC GENERATION IN REFLECTION FROM MEDIA WITH INVERSION SYMMETRY. , 1968 .

[23]  A Paul Alivisatos,et al.  Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. , 2005, Nano letters.

[24]  S Enoch,et al.  Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. , 2006, Physical review letters.

[25]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[26]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[27]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[28]  T. Heinz,et al.  Chapter 5 - Second-Order Nonlinear Optical Effects at Surfaces and Interfaces , 1991 .

[29]  Jonas Beermann,et al.  Direct observation of localized second-harmonic enhancement in random metal nanostructures. , 2003, Physical review letters.

[30]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[31]  Banshi D. Gupta,et al.  Comparison of Performance Parameters of Conventional and Nano-plasmonic Fiber Optic Sensors , 2007 .

[32]  Banshi D. Gupta,et al.  On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers , 2005 .

[33]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[34]  Didier Felbacq,et al.  Second-harmonic emission in two-dimensional photonic crystals , 2006 .

[35]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[36]  R. Osgood,et al.  Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes. , 2007, Optics letters.

[37]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[38]  P. Guyot-Sionnest,et al.  Excitation of dark plasmons in metal nanoparticles by a localized emitter. , 2009, Physical review letters.

[39]  Joel Villatoro,et al.  High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor , 2006 .