Queues in tandem with customer deadlines and retrials

We study queues in tandem with customer deadlines and retrials. We first consider a 2-queue Markovian system with blocking at the second queue, analyze it, and derive its stability condition. We then study a non-Markovian setting and derive the stability condition for an approximating diffusion, showing its similarity to the former condition. In the Markovian setting, we use probability generating functions and matrix analytic techniques. In the diffusion setting, we consider expectations of the first hitting times of compact sets.

[1]  Uri Yechiali,et al.  RETRIAL NETWORKS WITH FINITE BUFFERS AND THEIR APPLICATION TO INTERNET DATA TRAFFIC , 2008, Probability in the Engineering and Informational Sciences.

[2]  J. R. Jackson Networks of Waiting Lines , 1957 .

[3]  J. Pitman,et al.  Bessel processes and infinitely divisible laws , 1981 .

[4]  Sean P. Meyn,et al.  State-Dependent Criteria for Convergence of Markov Chains , 1994 .

[5]  Avishai Mandelbaum,et al.  Designing a Call Center with Impatient Customers , 2002, Manuf. Serv. Oper. Manag..

[6]  P. Dupuis,et al.  ON POSITIVE RECURRENCE OF CONSTRAINED DIFFUSION PROCESSES , 2001, math/0501018.

[7]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[8]  Amy R. Ward,et al.  A diffusion approximation for a generalized Jackson network with reneging , 2004 .

[9]  Uri Yechiali,et al.  Queues with system disasters and impatient customers when system is down , 2007, Queueing Syst. Theory Appl..

[10]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[11]  Uri Yechiali,et al.  A tandem Jackson network with feedback to the first node , 1991, Queueing Syst. Theory Appl..

[12]  Ward Whitt,et al.  Heavy-Traffic Limits for the G/H2*/n/mQueue , 2005, Math. Oper. Res..

[13]  Uri Yechiali Sequencing an N-Stage Process with Feedback , 1988 .

[14]  Eitan Altman,et al.  Analysis of customers’ impatience in queues with server vacations , 2006, Queueing Syst. Theory Appl..

[15]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[16]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .

[17]  Avishai Mandelbaum,et al.  Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers , 2009, Oper. Res..

[18]  Uri Yechiali,et al.  Routing in Queues with Delayed Information , 2003, Queueing Syst. Theory Appl..

[19]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[20]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[21]  Uri Yechiali,et al.  Queues where customers of one queue act as servers of the other queue , 2008, Queueing Syst. Theory Appl..

[22]  James R. Jackson,et al.  Jobshop-Like Queueing Systems , 2004, Manag. Sci..

[23]  Avishai Mandelbaum,et al.  Queues with Many Servers and Impatient Customers , 2012, Math. Oper. Res..

[24]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[25]  Konstantin Avrachenkov,et al.  On tandem blocking queues with a common retrial queue , 2010, Comput. Oper. Res..

[26]  Peter W. Glynn,et al.  Properties of the Reflected Ornstein–Uhlenbeck Process , 2003, Queueing Syst. Theory Appl..

[27]  J. Templeton Retrial queues , 1999 .

[28]  Eitan Altman,et al.  INFINITE-SERVER QUEUES WITH SYSTEM'S ADDITIONAL TASKS AND IMPATIENT CUSTOMERS , 2008, Probability in the Engineering and Informational Sciences.

[29]  Marion Kee,et al.  Analysis , 2004, Machine Translation.