The space of C1-smooth isogeometric spline functions on trilinearly parameterized volumetric two-patch domains

Abstract We study the C 1 -smooth isogeometric spline space over a specific class of unstructured hexahedral meshes, namely over the class of trilinearly parameterized volumetric two-patch domains. Recently, the structure of this space was experimentally analyzed in Birner et al. (2018) by numerically computing a basis and the dimension of this space. In this work, we develop the theoretical framework to explore the C 1 -smooth isogeometric space. Amongst others, we use the framework to prove the numerically obtained dimension from Birner et al. (2018) and to describe a simple explicit basis construction which consists of locally supported functions.

[1]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Frank Zeilfelder,et al.  Local lagrange interpolation with cubic C1 splines on tetrahedral partitions , 2009, J. Approx. Theory.

[4]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[5]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[6]  Xin Li,et al.  Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[9]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[10]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[11]  Xiaoping Qian,et al.  Isogeometric analysis with Bézier tetrahedra , 2017 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[14]  Alfio Quarteroni,et al.  MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces , 2015 .

[15]  Hendrik Speleers,et al.  Analysis-suitable spline spaces of arbitrary degree on unstructured quadrilateral meshes by , 2017 .

[16]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[17]  Ming-Jun Lai,et al.  A Cr trivariate macro-element based on the Alfeld split of tetrahedra , 2013, J. Approx. Theory.

[18]  Mario Kapl,et al.  Construction of analysis-suitable G1 planar multi-patch parameterizations , 2017, Comput. Aided Des..

[19]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..

[20]  Mario Kapl,et al.  Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries , 2017, Comput. Math. Appl..

[21]  Jörg Peters,et al.  Refinable G1 functions on G1 free-form surfaces , 2017, Comput. Aided Geom. Des..

[22]  Michel Bercovier,et al.  Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes , 2014, 1412.1125.

[23]  Victor M. Calo,et al.  Isogeometric Analysis of Phase-Field Models: Application to the Cahn-Hilliard Equation , 2009 .

[24]  J. A. Gregory Geometric continuity , 1989 .

[25]  Bert Jüttler,et al.  Bases and dimensions of C1-smooth isogeometric splines on volumetric two-patch domains , 2018, Graph. Model..

[26]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[27]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[28]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[29]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[30]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[31]  Mario Kapl,et al.  Dimension and basis construction for analysis-suitable G1 two-patch parameterizations , 2017, Comput. Aided Geom. Des..

[32]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[33]  Mario Kapl,et al.  An isogeometric C1 subspace on unstructured multi-patch planar domains , 2019, Comput. Aided Geom. Des..

[34]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[35]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[36]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[37]  Larry L. Schumaker,et al.  A C1 quadratic trivariate macro-element space defined over arbitrary tetrahedral partitions , 2009, J. Approx. Theory.