Subcritical bifurcation in spatially extended systems

A theory for noise-driven subcritical instabilities in spatially extended systems is put forward. The theory allows one to calculate the critical bifurcation parameter for a first-order phase transition in such non-equilibrium systems in the thermodynamic limit and analyse the mechanism of phase transition. Two examples with distinctive features are studied in detail to demonstrate the usefulness of the theory and the different scenarios that can occur in the thermodynamic limit of non-equilibrium systems.

[1]  Richard L. Kautz,et al.  Activation energy for thermally induced escape from a basin of attraction , 1987 .

[2]  E Weinan,et al.  The gentlest ascent dynamics , 2010, 1011.0042.

[3]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[4]  R. Graham,et al.  Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications to Lasers and Nonlinear Optics , 1973 .

[5]  M. Mimura Reaction-Diffusion Systems Arising in Biological and Chemical Systems: Application of Singular Limit Procedures , 2003 .

[6]  Bernard J. Matkowsky,et al.  Diffusion Across Characteristic Boundaries , 1982 .

[7]  Shin-Ichiro Ei,et al.  Dynamics of front solutions in a specific reaction-diffusion system in one dimension , 2008 .

[8]  S. Varadhan Large Deviations and Applications , 1984 .

[9]  Richard L. Kautz,et al.  Quasipotential and the stability of phase lock in nonhysteretic Josephson junctions , 1994 .

[10]  Richard B. Sowers,et al.  Large Deviations for a Reaction-Diffusion Equation with Non-Gaussian Perturbations , 1992 .

[11]  Jerry Westerweel,et al.  Turbulence transition in pipe flow , 2007 .

[12]  S. R. S. Varadhan RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS (Grundlehren der mathematischen Wissenschaften, 260) , 1985 .

[13]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[14]  Giovanna Jona-Lasinio,et al.  Large fluctution for a non linear heat equation with noise , 1982 .

[15]  R. Graham Macroscopic potentials, bifurcations and noise in dissipative systems , 1987 .

[16]  E Weinan,et al.  Minimum action method for the study of rare events , 2004 .

[17]  Kautz Thermally induced escape: The principle of minimum available noise energy. , 1988, Physical review. A, General physics.

[18]  Weiqing Ren,et al.  Adaptive minimum action method for the study of rare events. , 2008, The Journal of chemical physics.

[19]  Paul C. Fife,et al.  Pattern formation in reacting and diffusing systems , 1976 .

[20]  Robert V. Kohn,et al.  Action minimization and sharp‐interface limits for the stochastic Allen‐Cahn equation , 2007 .

[21]  P. Manneville Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  David Terman,et al.  Propagation Phenomena in a Bistable Reaction-Diffusion System , 1982 .

[23]  R. Graham Generalized Thermodynamic Potential for the Convection Instability , 1973 .

[24]  Y. Pomeau Front motion, metastability and subcritical bifurcations in hydrodynamics , 1986 .

[25]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[26]  Robert S. Maier,et al.  Escape problem for irreversible systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.