Study of the structural stability of the mini‐hairpin d(GCGAAGC) by hydrogen–deuterium exchange kinetics

[1]  Hybridization kinetics of oligodeoxyribonucleotides with a d(GCGAAGC) hairpin at the 3'-end. , 1999, Journal of biomolecular structure & dynamics.

[2]  M. Réfrégiers,et al.  Opening of the extraordinarily stable mini-hairpin d(GCGAAGC). , 1997, Nucleic acids research.

[3]  Matthieu Réfrégiers,et al.  Resonance Raman analysis of a fluorescently labeled oligonucleotide forming a very stable hairpin , 1997, European Biophysics Journal.

[4]  K Watanabe,et al.  GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. , 1997, Biochemistry.

[5]  B. Jollès,et al.  Fluorescence resonance energy transfer analysis of the degradation of an oligonucleotide protected by a very stable hairpin. , 1996, Journal of biomolecular structure & dynamics.

[6]  G. Varani Exceptionally stable nucleic acid hairpins. , 1995, Annual review of biophysics and biomolecular structure.

[7]  K. Watanabe,et al.  Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis. , 1994, Nucleic acids research.

[8]  K. Watanabe,et al.  Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. , 1994, Nucleic acids research.

[9]  M. Blumenfeld,et al.  Improved anti-herpes simplex virus type 1 activity of a phosphodiester antisense oligonucleotide containing a 3'-terminal hairpin-like structure. , 1994, Antisense research and development.

[10]  S. Agrawal,et al.  Self-stabilized antisense oligodeoxynucleotide phosphorothioates: properties and anti-HIV activity. , 1993, Nucleic acids research.

[11]  K. Miura,et al.  Stabilization of mRNA in an Escherichia coli cell‐free translation system , 1993, FEBS letters.

[12]  K Watanabe,et al.  Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing. , 1992, Nucleic acids research.

[13]  S. Crooke Therapeutic applications of oligonucleotides. , 1992, Bio/technology.

[14]  M. Guéron,et al.  Processes of base-pair opening and proton exchange in Z-DNA. , 1990, Biochemistry.

[15]  B. Jollès,et al.  Kinetics of exchangeable protons in Z DNA: a UV resonance Raman study. , 1989, Nucleic acids research.

[16]  M. Guéron,et al.  Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. , 1988, Journal of Molecular Biology.

[17]  M. Guéron,et al.  Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine-pyrimidine step and in the duplex of inverse sequence. , 1987, Journal of molecular biology.

[18]  B. Jollès,et al.  Resonance Raman studies of guanine derivatives , 1987 .

[19]  P. Turpin,et al.  Recognition of base pairs by polar peptides in double stranded DNA. , 1982, Nucleic acids research.

[20]  J. Ramstein,et al.  Salt-dependent dynamic structure of poly(dG-dC) · poly(dG-dC) , 1980, Nature.

[21]  S. Englander,et al.  Open states in native polynucleotides. I. Hydrogen-exchange study of adenine-containing double helices. , 1975, Journal of molecular biology.