HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS

In these lectures we review a few high order accurate numerical methods for solving time dependent Hamilton-Jacobi equations. We will start with a brief introduction of the Hamilton-Jacobi equations, the appearance of singularities as discontinuities in the derivatives of their solutions hence the necessity to introduce the concept of viscosity solutions, and rst order monotone numerical schemes on structured and unstructured meshes to approximate such viscosity solutions, which can be proven convergent with error estimates. We then move on to discuss high order accurate methods which are based on the rst order monotone schemes as building blocks. We describe the Essentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes for structured meshes, and WENO schemes and Discontinuous Galerkin (DG) schemes for unstructured meshes.

[1]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[2]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[3]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[4]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[5]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[6]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[7]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[8]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[9]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[10]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[11]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[13]  R. LeVeque Numerical methods for conservation laws , 1990 .

[14]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[15]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[16]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[17]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[18]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[19]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[20]  Rémi Abgrall,et al.  On the use of Mühlbach expansions in the recovery step of ENO methods , 1997 .

[21]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[22]  Z. Xin,et al.  Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .

[23]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[24]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[25]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[26]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[27]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[28]  Chi-Wang Shu,et al.  Analysis of the discontinuous Galerkin method for Hamilton—Jacobi equations , 2000 .

[29]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[30]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[31]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[32]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[33]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[34]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[35]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[36]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[37]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[38]  Chi-Wang Shu,et al.  Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..

[39]  Chi-Wang Shu,et al.  Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations , 2005, Appl. Math. Lett..

[40]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .