BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS
暂无分享,去创建一个
[1] N. Murray,et al. ON THE DYNAMICS AND TIDAL DISSIPATION RATE OF THE WHITE DWARF IN 4U 1820-30 , 2011, 1110.6655.
[2] H. Perets,et al. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.
[3] D. Merritt,et al. TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.
[4] S. Naoz,et al. THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE , 2011, 1106.3329.
[5] Will M. Farr,et al. Hot Jupiters from secular planet–planet interactions , 2010, Nature.
[6] T. Bulik,et al. The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.
[7] Daniel C. Fabrycky,et al. ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS , 2009, 0901.4328.
[8] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[9] McMillan,et al. Black Hole Mergers in the Universe , 1999, The Astrophysical journal.
[10] E. Ford,et al. Secular Evolution of Hierarchical Triple Star Systems , 1999, astro-ph/9905348.
[11] M. Miller,et al. Four-Body Effects in Globular Cluster Black Hole Coalescence , 2002, astro-ph/0202298.
[12] S. Tremaine,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .
[13] T. Piran,et al. Neutron Star and Black Hole Binaries in the Galaxy , 1991 .
[14] S. Dong,et al. The rate of WD-WD head-on collisions may be as high as the SNe Ia rate , 2012, 1211.4584.
[15] Seppo Mikkola,et al. An implementation ofN-body chain regularization , 1993 .
[16] S. Tremaine,et al. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.
[17] Algorithmic regularization with velocity-dependent forces , 2006, astro-ph/0605054.
[18] H. Bond,et al. XMM-NEWTON DETECTION OF A TRANSIENT X-RAY SOURCE IN THE VICINITY OF V838 MONOCEROTIS , 2009, 0910.0503.
[19] M. Miller,et al. MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.
[20] Steinn Sigurdsson,et al. Binary-single star interactions in globular clusters , 1993 .
[21] On the rarity of double black hole binaries : Consequences for gravitational wave detection , 2006, astro-ph/0612032.
[22] M. J. Benacquista,et al. Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.
[23] Bence Kocsis,et al. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.
[24] V. Kalogera,et al. Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.
[25] J. Stodolkiewicz. Dynamical evolution of globular clusters. I , 1982 .
[26] L. Wen. On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.
[27] W. Farr,et al. RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2012, 1211.3372.
[28] S. Mikkola,et al. Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations , 2010 .
[29] D. Merritt,et al. IMPLEMENTING FEW-BODY ALGORITHMIC REGULARIZATION WITH POST-NEWTONIAN TERMS , 2007, 0709.3367.
[30] W. Farr,et al. Secular Dynamics in Hierarchical Three-Body Systems , 2011, 1107.2414.
[31] D. Merritt. Dynamics and Evolution of Galactic Nuclei , 2013 .
[32] S. Mikkola,et al. The Kozai Mechanism and the Stability of Planetary Orbits in Binary Star Systems , 1997 .
[33] Tomasz Bulik,et al. A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.
[34] Thomas J. Maccarone,et al. A black hole in a globular cluster , 2007, Nature.
[35] A. Zezas,et al. THE X-RAY SPECTRA OF THE LUMINOUS LMXBs IN NGC 3379: FIELD AND GLOBULAR CLUSTER SOURCES , 2010, 1003.3236.
[36] O. Blaes,et al. The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes , 2002, astro-ph/0203370.
[37] Piet Hut,et al. Stellar black holes in globular clusters , 1993, Nature.
[38] Bence Kocsis,et al. Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.
[39] G. Nelemans,et al. Population synthesis of triple systems in the context of mergers of carbon–oxygen white dwarfs , 2013, 1301.1469.
[40] Laura Chomiuk,et al. Two stellar-mass black holes in the globular cluster M22 , 2012, Nature.
[41] S. Aarseth,et al. Mergers and ejections of black holes in globular clusters , 2012, 1202.4688.
[42] Steinn Sigurdsson,et al. Primordial black holes in globular clusters , 1993, Nature.
[43] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[44] S. Aarseth,et al. Tidal interactions in star cluster simulations , 2001 .
[45] Jarrod R. Hurley,et al. Multiple stellar-mass black holes in globular clusters: theoretical confirmation , 2012, 1211.6608.
[46] J. Faber,et al. TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.
[47] R. O’Shaughnessy,et al. Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.
[48] Charles D. Bailyn,et al. THE MASS DISTRIBUTION OF STELLAR BLACK HOLES , 1998 .
[49] T. Thompson,et al. On WD-WD Mergers in Triple Systems: The Role of Kozai Resonance with Tidal Friction , 2013, 1305.2191.
[50] N. University,et al. Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates , 2006, astro-ph/0610076.
[51] Douglas C. Heggie,et al. Binary evolution in stellar dynamics , 1975 .
[52] U. Padova,et al. Galactic globular cluster relative ages , 1999, astro-ph/9907394.
[53] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[54] T. Thompson. ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.
[55] M. L. Lidov. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .
[56] Douglas P. Hamilton,et al. Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.
[57] Jean P. Brodie,et al. Extragalactic Globular Clusters and Galaxy Formation , 2006 .
[58] P. Eggleton,et al. A Mechanism for Producing Short-Period Binaries , 2006 .
[59] I. Mandel,et al. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.
[60] K. Ulaczyk,et al. V1309 Scorpii: merger of a contact binary , 2010, 1012.0163.
[61] Yoshihide Kozai,et al. Secular perturbations of asteroids with high inclination and eccentricity , 1962 .
[62] Pavel Kroupa,et al. Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.
[63] L. Spitzer. Dynamical evolution of globular clusters , 1987 .
[64] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[65] Harald P. Pfeiffer,et al. Numerical simulations of compact object binaries , 2012, 1203.5166.
[66] E. A. Huerta,et al. Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.