BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS

Coalescing black hole (BH) binaries forming in the dense core of globular clusters (GCs) are expected to be one of the brightest sources of gravitational wave (GW) radiation for the next generation of ground-based laser interferometers. Favorable conditions for a merger are initiated by the Kozai resonance in which the gravitational interaction with a third distant object, typically another BH, induces quasi-periodic variations of the inner BH binary eccentricity. In this article we perform high precision three-body simulations of the long-term evolution of hierarchical BH triples and investigate the conditions that lead to the merging of the BH binary and the way it might become an observable source of GW radiation. We find that the secular orbit average treatment, which was adopted in previous works, does not reliably describe the dynamics of these systems if the binary is orbited by the outer BH on a highly inclined orbit at a moderate distance. We show that 50% of coalescing BH binaries driven by the Kozai mechanism in GCs will have eccentricities larger than 0.1, with 10% of them being extremely eccentric, (1 – e) ≲ 10{sup –4}, when they first chirp in the frequency band of ground-based laser interferometers. This impliesmore » that a large fraction of such GW sources could be missed if conventional quasi-circular templates are used for analysis of GW detector data. The efficient detection of all coalescing BH binaries in GCs will therefore require template banks of eccentric inspiral waveforms for matched-filtering and dedicated search strategies.« less

[1]  N. Murray,et al.  ON THE DYNAMICS AND TIDAL DISSIPATION RATE OF THE WHITE DWARF IN 4U 1820-30 , 2011, 1110.6655.

[2]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[3]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[4]  S. Naoz,et al.  THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE , 2011, 1106.3329.

[5]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[6]  T. Bulik,et al.  The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.

[7]  Daniel C. Fabrycky,et al.  ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS , 2009, 0901.4328.

[8]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[9]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[10]  E. Ford,et al.  Secular Evolution of Hierarchical Triple Star Systems , 1999, astro-ph/9905348.

[11]  M. Miller,et al.  Four-Body Effects in Globular Cluster Black Hole Coalescence , 2002, astro-ph/0202298.

[12]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[13]  T. Piran,et al.  Neutron Star and Black Hole Binaries in the Galaxy , 1991 .

[14]  S. Dong,et al.  The rate of WD-WD head-on collisions may be as high as the SNe Ia rate , 2012, 1211.4584.

[15]  Seppo Mikkola,et al.  An implementation ofN-body chain regularization , 1993 .

[16]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[17]  Algorithmic regularization with velocity-dependent forces , 2006, astro-ph/0605054.

[18]  H. Bond,et al.  XMM-NEWTON DETECTION OF A TRANSIENT X-RAY SOURCE IN THE VICINITY OF V838 MONOCEROTIS , 2009, 0910.0503.

[19]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[20]  Steinn Sigurdsson,et al.  Binary-single star interactions in globular clusters , 1993 .

[21]  On the rarity of double black hole binaries : Consequences for gravitational wave detection , 2006, astro-ph/0612032.

[22]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[23]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[24]  V. Kalogera,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[25]  J. Stodolkiewicz Dynamical evolution of globular clusters. I , 1982 .

[26]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[27]  W. Farr,et al.  RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2012, 1211.3372.

[28]  S. Mikkola,et al.  Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations , 2010 .

[29]  D. Merritt,et al.  IMPLEMENTING FEW-BODY ALGORITHMIC REGULARIZATION WITH POST-NEWTONIAN TERMS , 2007, 0709.3367.

[30]  W. Farr,et al.  Secular Dynamics in Hierarchical Three-Body Systems , 2011, 1107.2414.

[31]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[32]  S. Mikkola,et al.  The Kozai Mechanism and the Stability of Planetary Orbits in Binary Star Systems , 1997 .

[33]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[34]  Thomas J. Maccarone,et al.  A black hole in a globular cluster , 2007, Nature.

[35]  A. Zezas,et al.  THE X-RAY SPECTRA OF THE LUMINOUS LMXBs IN NGC 3379: FIELD AND GLOBULAR CLUSTER SOURCES , 2010, 1003.3236.

[36]  O. Blaes,et al.  The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes , 2002, astro-ph/0203370.

[37]  Piet Hut,et al.  Stellar black holes in globular clusters , 1993, Nature.

[38]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[39]  G. Nelemans,et al.  Population synthesis of triple systems in the context of mergers of carbon–oxygen white dwarfs , 2013, 1301.1469.

[40]  Laura Chomiuk,et al.  Two stellar-mass black holes in the globular cluster M22 , 2012, Nature.

[41]  S. Aarseth,et al.  Mergers and ejections of black holes in globular clusters , 2012, 1202.4688.

[42]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[43]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[44]  S. Aarseth,et al.  Tidal interactions in star cluster simulations , 2001 .

[45]  Jarrod R. Hurley,et al.  Multiple stellar-mass black holes in globular clusters: theoretical confirmation , 2012, 1211.6608.

[46]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[47]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[48]  Charles D. Bailyn,et al.  THE MASS DISTRIBUTION OF STELLAR BLACK HOLES , 1998 .

[49]  T. Thompson,et al.  On WD-WD Mergers in Triple Systems: The Role of Kozai Resonance with Tidal Friction , 2013, 1305.2191.

[50]  N. University,et al.  Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates , 2006, astro-ph/0610076.

[51]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[52]  U. Padova,et al.  Galactic globular cluster relative ages , 1999, astro-ph/9907394.

[53]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[54]  T. Thompson ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.

[55]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[56]  Douglas P. Hamilton,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[57]  Jean P. Brodie,et al.  Extragalactic Globular Clusters and Galaxy Formation , 2006 .

[58]  P. Eggleton,et al.  A Mechanism for Producing Short-Period Binaries , 2006 .

[59]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[60]  K. Ulaczyk,et al.  V1309 Scorpii: merger of a contact binary , 2010, 1012.0163.

[61]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[62]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[63]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[64]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[65]  Harald P. Pfeiffer,et al.  Numerical simulations of compact object binaries , 2012, 1203.5166.

[66]  E. A. Huerta,et al.  Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.