Convolution, Separation and Concurrency

A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.

[1]  永田 守男,et al.  Verifying Properties of Parallel Programs : An Axiomatic Approach , 1976 .

[2]  Alan Burns,et al.  Comparing Degrees of Non-Determinism in Expression Evaluation , 2013, Comput. J..

[3]  Andrzej Tarlecki,et al.  A Language of Specified Programs , 1985, Sci. Comput. Program..

[4]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[5]  B. Day On closed categories of functors , 1970 .

[6]  Georg Struth,et al.  Programming and automating mathematics in the Tarski-Kleene hierarchy , 2014, J. Log. Algebraic Methods Program..

[7]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[8]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[9]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[10]  John Derrick,et al.  Deriving real-time action systems with multiple time bands using algebraic reasoning , 2014, Sci. Comput. Program..

[11]  Peter W. O'Hearn,et al.  Local Action and Abstract Separation Logic , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[12]  J. Conway Regular algebra and finite machines , 1971 .

[13]  Georg Struth,et al.  On Locality and the Exchange Law for Concurrent Processes , 2011, CONCUR.

[14]  Cliff B. Jones,et al.  Tentative steps toward a development method for interfering programs , 1983, TOPL.

[15]  Bernhard Möller,et al.  An algebra of hybrid systems , 2009, J. Log. Algebraic Methods Program..

[16]  E. Riehl Basic concepts of enriched category theory , 2014 .

[17]  Berndt Farwer,et al.  ω-automata , 2002 .

[18]  Ben C. Moszkowski,et al.  A complete axiomatization of interval temporal logic with infinite time , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[19]  Hongseok Yang,et al.  Views: compositional reasoning for concurrent programs , 2013, POPL.

[20]  Rozália Madarász,et al.  Power structures , 2018, Dental Abstracts.

[21]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[22]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[23]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[24]  Georg Struth,et al.  Hybrid process algebra , 2005, J. Log. Algebraic Methods Program..

[25]  Ralph-Johan Back,et al.  Refinement Calculus: A Systematic Introduction , 1998 .

[26]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Georg Struth,et al.  Kleene Algebra , 2013, Arch. Formal Proofs.

[29]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[30]  J. Berstel,et al.  Les séries rationnelles et leurs langages , 1984 .