Anomalously low activation energy of nanoconfined MgCO3 precipitation.

Magnesite (MgCO3) precipitation within the nanoconfined space of adsorbed H2O films (∼5 monolayers) was determined to have an apparent activation energy of only 36 ± 6 kJ mol-1, suggesting that Mg2+ under nanoconfinement adopts a hydration configuration that mimics that of aqueous Ca2+, at least energetically, if not also specifically in hydration structure.

[1]  D. Hoyt,et al.  Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films , 2019, The Journal of Physical Chemistry C.

[2]  S. De Feyter,et al.  Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. , 2019, Chemical communications.

[3]  K. Maher,et al.  Effects of nano-confinement on Zn(II) adsorption to nanoporous silica , 2018, Geochimica et Cosmochimica Acta.

[4]  D. Dixon,et al.  Water Structure Controls Carbonic Acid Formation in Adsorbed Water Films. , 2018, The journal of physical chemistry letters.

[5]  K. Novoselov,et al.  Anomalously low dielectric constant of confined water , 2018, Science.

[6]  Lin Qiu,et al.  Tunable Manipulation of Mineral Carbonation Kinetics in Nanoscale Water Films via Citrate Additives. , 2018, Environmental science & technology.

[7]  Y. Gogotsi,et al.  2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage , 2017 .

[8]  I. Power,et al.  Room Temperature Magnesite Precipitation , 2017 .

[9]  Y. Meng,et al.  Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries , 2017 .

[10]  W. Seyfried,et al.  Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2‐rich brine , 2017 .

[11]  A. T. Owen,et al.  Field Validation of Supercritical CO2 Reactivity with Basalts , 2017 .

[12]  R. Espinosa‐Marzal,et al.  Molecular insight into the nanoconfined calcite–solution interface , 2016, Proceedings of the National Academy of Sciences.

[13]  R. S. MillerQuin,et al.  Experimental Study of Porosity Changes in Shale Caprocks Exposed to CO2-Saturated Brines I: Evolution of Mineralogy, Pore Connectivity, Pore Size Distribution, and Surface Area , 2016 .

[14]  G. Rance,et al.  Chemical reactions confined within carbon nanotubes. , 2016, Chemical Society reviews.

[15]  Wallace S. Broecker,et al.  Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions , 2016, Science.

[16]  S. Kerisit,et al.  Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction. , 2016, Environmental science & technology.

[17]  Dongjiang Yang,et al.  Co3O4 nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage. , 2015, Chemical communications.

[18]  D. DePaolo,et al.  The Nanoscale Basis of CO2 Trapping for Geologic Storage. , 2015, Environmental science & technology.

[19]  M. Bowden,et al.  Impacts of organic ligands on forsterite reactivity in supercritical CO2 fluids. , 2015, Environmental science & technology.

[20]  Xun Wang,et al.  Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. , 2013, Chemical communications.

[21]  D. Hoyt,et al.  Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids , 2013 .

[22]  B. Arey,et al.  Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. , 2013, Environmental science & technology.

[23]  B. Arey,et al.  Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures , 2012 .

[24]  A. Striolo,et al.  Aqueous NaCl Solutions within Charged Carbon-Slit Pores: Partition Coefficients and Density Distributions from Molecular Dynamics Simulations , 2011 .

[25]  Yifeng Wang,et al.  Nanogeochemistry: Geochemical reactions and mass transfers in nanopores , 2003 .

[26]  A. Chandra,et al.  Dielectric Constant of Water Confined in a Nanocavity , 2001 .

[27]  F. Lippmann Sedimentary Carbonate Minerals , 1973 .

[28]  Per E. M. Siegbahn,et al.  Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory , 1998 .