Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI

Abstract An extension of the earlier multi-reference linearized coupled-cluster method to include quadratic EPV terms in an averaged way is presented. The resulting functional is conceptually similar to the averaged coupled pair functional but it offers superior performance particularly with small reference spaces. This is demonstrated on the ozone molecule using a two electron-two orbital GVB-type reference function.

[1]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[2]  J. Simons,et al.  A potentially size‐consistent multiconfiguration based coupled electron pair approximation , 1989 .

[3]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[4]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[5]  David H. Magers,et al.  Highly correlated single‐reference studies of the O3 potential surface. I. Effects of high order excitations on the equilibrium structure and harmonic force field of ozone , 1989 .

[6]  R. Bartlett,et al.  Coupled-cluster method for open-shell singlet states , 1992 .

[7]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[8]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[9]  P. Ruttink,et al.  Size consistent multireference single and double excitation configuration interaction calculations. The multireference coupled electron‐pair approximation , 1991 .

[10]  J. Malrieu,et al.  Four self-consistent dressing to achieve size-consistency of singles and doubles configuration interaction , 1992 .

[11]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[12]  D. Mukherjee The linked-cluster theorem in the open-shell coupled-cluster theory for incomplete model spaces , 1986 .

[13]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[14]  R. Bartlett,et al.  Multireference coupled‐cluster method: Ionization potentials and excitation energies for ketene and diazomethane , 1989 .

[15]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[16]  L. T. Redmon,et al.  Accurate binding energies of diborane, borane carbonyl, and borazane determined by many-body perturbation theory , 1979 .

[17]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[18]  John F. Stanton,et al.  Fock space multireference coupled-cluster theory for general single determinant reference functions , 1992 .

[19]  A. C. Hurley Electron correlation in small molecules , 1976 .

[20]  Rodney J. Bartlett,et al.  Molecular Applications of Coupled Cluster and Many-Body Perturbation Methods , 1980 .

[21]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[22]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[23]  Hans Lischka,et al.  A general multireference configuration interaction gradient program , 1992 .

[24]  John F. Stanton,et al.  A benchmark coupled-cluster single, double, and triple excitation (CCSDT) study of the structure and harmonic vibrational frequencies of the ozone molecule☆ , 1991 .

[25]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .