A basis for self-reconfiguring robots using crystal modules

We discuss a basis for creating self-reconfiguring robots and instantiate it for crystal modules. Crystalline robots consist of modules that can aggregate together to form distributed robot systems. Crystalline modules are actuated by expanding and contracting each unit. This actuation mechanism permits automated shape metamorphosis. We describe the crystalline module concept and its physical implementation. We prove that crystalline robots are general self-reconfiguring robots.

[1]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[2]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[3]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[4]  Daniela Rus,et al.  Motion synthesis for the self-reconfiguring molecule , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[5]  Christiaan J. J. Paredis,et al.  Design of modular fault tolerant manipulators , 1995 .

[6]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[7]  Eiichi Yoshida,et al.  Reconfiguration Method for a Distributed Mechanical System , 1996 .

[8]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  Isao Shimoyama,et al.  Dynamics of Self-Assembling Systems: Analogy with Chemical Kinetics , 1994, Artificial Life.

[14]  Arthur C. Sanderson,et al.  TETROBOT modular robotics: prototype and experiments , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[15]  G. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996 .

[16]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[17]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[18]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.