The geometry of diagonal groups

Diagonal groups are one of the classes of finite primitive permutation groups occurring in the conclusion of the O'Nan-Scott theorem. Several of the other classes have been described as the automorphism groups of geometric or combinatorial structures such as affine spaces or Cartesian decompositions, but such structures for diagonal groups have not been studied. The main purpose of this paper is to describe and characterise such structures, which we call diagonal semilattices. Unlike the diagonal groups in the O'Nan-Scott theorem, which are defined over finite characteristically simple groups, our construction works over any group, finite or infinite. A diagonal semilattice depends on a dimension m and a group T. For m=2, it is a Latin square, the Cayley table of T, though in fact any Latin square satisfies our axioms. However, for m>=3, the group T emerges naturally and uniquely from the axioms. (The situation somewhat resembles projective geometry, where projective planes exist in profusion but higher-dimensional structures are coordinatised by an algebraic object, a division ring.) A diagonal semilattice is contained in the partition lattice on a set, and we provide an introduction to the calculus of partitions. Many of the concepts and constructions come from experimental design in statistics. We also determine when a diagonal group can be primitive, or quasiprimitive (these conditions are equivalent for diagonal groups). Associated with the diagonal semilattice is a graph, the diagonal graph, which has the same automorphism group except in four small cases with m<=3. The class of diagonal graphs includes some well-known families, Latin-square graphs and folded cubes. We obtain partial results on the chromatic number of a diagonal graph, and mention an application to synchronization.

[1]  Stewart Wilcox,et al.  Reduction of the Hall–Paige conjecture to sporadic simple groups , 2009, 1010.1323.

[2]  Brendan D. McKay,et al.  A Census of Small Latin Hypercubes , 2008, SIAM J. Discret. Math..

[3]  Ian M. Wanless,et al.  Autoparatopisms of Quasigroups and Latin Squares , 2017 .

[4]  V. G. Vizing The cartesian product of graphs , 1963 .

[5]  Peter M. Neumann,et al.  Subgroups of Infinite Symmetric Groups , 1990 .

[6]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.

[7]  A. Blokhuis,et al.  On M.D.S. codes, arcs inPG(n, q) withq even, and a solution of three fundamental problems of B. Segre , 1988 .

[8]  B. Bagchi,et al.  Latin squares , 2012 .

[9]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[10]  R. A. Bailey Relations among partitions , 2017, BCC.

[11]  Boxin Tang,et al.  Construction of orthogonal and nearly orthogonal Latin hypercubes , 2009 .

[12]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[13]  Victor A. Shcherbacov,et al.  Elements of Quasigroup Theory and Applications , 2017 .

[14]  Alan R. Woods,et al.  Maximal Subgroups of Infinite Symmetric Groups , 1990 .

[15]  Charles J. Colbourn,et al.  Orthogonal Arrays of Index More Than One , 2006 .

[16]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[17]  Group factorisations, uniform automorphisms, and permutation groups of simple diagonal type , 2016, Israel Journal of Mathematics.

[18]  Ian M. Wanless,et al.  On the Number of Latin Squares , 2005, 0909.2101.

[19]  Saieed Akbari,et al.  Maximal Subgroups of GL1(D) , 1999 .

[20]  R. H. Bruck Finite nets. II. Uniqueness and imbedding. , 1963 .

[21]  B. Welch The structure , 1992 .

[22]  Cheryl E. Praeger,et al.  Permutation Groups and Cartesian Decompositions , 2018 .

[23]  R. A. Bailey Association Schemes: Designed Experiments, Algebra and Combinatorics , 2004 .

[24]  C. Praeger,et al.  THE CONTRIBUTION OF L. G. KOVÁCS TO THE THEORY OF PERMUTATION GROUPS , 2015, Journal of the Australian Mathematical Society.

[25]  Peter M. Neumann,et al.  AN ENUMERATION THEOREM FOR FINITE GROUPS , 1969 .

[26]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[27]  Thomas Neil Throckmorton,et al.  Structures of classification data , 1961 .

[28]  D. A. Preece,et al.  Non-orthogonal graeco-latin designs , 1976 .

[29]  C. Praeger,et al.  Factorisations of characteristically simple groups , 2002 .

[30]  鈴木 通夫 Structure of a group and the structure of its lattice of subgroups , 1956 .

[31]  Martin W. Liebeck,et al.  The classification of finite simple Moufang loops , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  R. A. Bailey,et al.  Factorial Design and Abelian Groups , 1985 .

[33]  Vincent Duquenne,et al.  What can lattices do for experimental designs , 1986 .

[34]  M. C. Jordan Traite des substitutions et des equations algebriques , 1870 .

[35]  S. Srinivasan,et al.  Maximal subgroups of finite groups , 1990 .

[36]  Peter J. Cameron,et al.  Random strongly regular graphs? , 2001, Electron. Notes Discret. Math..

[37]  Peter J. Cameron,et al.  Between primitive and 2-transitive: Synchronization and its friends , 2015, 1511.03184.

[38]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[39]  S. Shrikhande,et al.  THE SHRIKHANDE GRAPH , 2007 .

[40]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[41]  Cheryl E. Praeger,et al.  Diagonal groups and arcs over groups , 2021, Designs, Codes and Cryptography.

[42]  P. Cameron,et al.  The Hall–Paige conjecture, and synchronization for affine and diagonal groups , 2018, Journal of Algebra.

[43]  L. Paige,et al.  Complete mappings of finite groups. , 1951 .

[44]  K. Phelps Automorphism free latin square graphs , 1980, Discret. Math..

[45]  R. A. Bailey,et al.  Orthogonal Partitions in Designed Experiments , 1996, Des. Codes Cryptogr..

[46]  BIBLIOGRAPHY OF DESIGNS FOR EXPERIMENTS1 IN THREE DIMENSIONS , 1975 .

[47]  Charles Payan,et al.  On the chromatic number of cube-like graphs , 1992, Discret. Math..

[48]  L. G. Kovács,et al.  Wreath decompositions of finite permutation groups , 1989, Bulletin of the Australian Mathematical Society.

[49]  D. Preece Factorial experimentation in second-order Latin cubes , 1989 .

[50]  Ching-Shui Cheng,et al.  MULTISTRATUM FRACTIONAL FACTORIAL DESIGNS , 2011 .

[51]  Anthony B. Evans The admissibility of sporadic simple groups , 2009 .

[52]  R. Fisher A SYSTEM OF CONFOUNDING FOR FACTORS WITH MORE THAN TWO ALTERNATIVES, GIVING COMPLETELY ORTHOGONAL CUBES AND HIGHER POWERS , 1943 .

[53]  Tue Tjur,et al.  Analysis of Variance Models in Orthogonal Designs , 1984 .

[54]  Cheryl E. Praeger,et al.  A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .

[55]  D. H. McLain A characteristically simple group , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  M. Aschbacher OVERGROUPS OF PRIMITIVE GROUPS , 2009, Journal of the Australian Mathematical Society.

[57]  P. Cameron Combinatorics: Topics, Techniques, Algorithms , 1995 .

[58]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[59]  Tullio Ceccherini-Silberstein,et al.  Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups , 2014 .

[60]  P. Cameron Asymmetric Latin squares, Steiner triple systems, and edge-parallelisms , 2015, 1507.02190.

[61]  Cheryl E. Praeger,et al.  Generalized Wreath Products of Permutation Groups , 1983 .

[62]  G. P. Erorychev Proof of the van der Waerden conjecture for permanents , 1981 .

[63]  Michael Aschbacher,et al.  Finite Group Theory , 1994 .

[64]  W. W. Ball,et al.  Mathematical Recreations and Essays , 1905, Nature.

[65]  SUPPLEMENTARY BIBLIOGRAPHY OF DESIGNS FOR EXPERIMENTS IN THREE DIMENSIONS , 1979 .

[66]  D. Robinson A Course in the Theory of Groups , 1982 .

[67]  John A. Nelder,et al.  The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  R. A. Bailey,et al.  Design of comparative experiments , 2008 .

[69]  Luis Goddyn,et al.  The Chromatic Number of Finite Group Cayley Tables , 2019, Electron. J. Comb..

[70]  Steven T. Dougherty,et al.  Latin k-hypercubes , 2008, Australas. J Comb..

[71]  Lowell J. Paige,et al.  A class of simple Moufang loops , 1956 .

[72]  G. Mullen,et al.  D-Dimensional hypercubes and the Euler and MacNeish conjectures , 1995 .

[73]  Dana Randall,et al.  Decomposition Methods and Sampling Circuits in the Cartesian Lattice , 2001, MFCS.

[74]  Peter J. Cameron,et al.  The diagonal graph , 2021, 2101.02451.

[75]  D. Preece Latin squares, Latin cubes, Latin rectangles , 2006 .

[76]  J. Covington,et al.  SOME MAXIMAL SUBGROUPS OF INFINITE SYMMETRIC GROUPS , 1996 .

[77]  Primitive permutation groups of simple diagonal type , 1988 .

[78]  S. C. Pearce,et al.  Orthogonal designs for three-dimensional experiments , 1973 .