The geometry of diagonal groups
暂无分享,去创建一个
Cheryl E. Praeger | Peter J. Cameron | R. A. Bailey | Csaba Schneider | P. Cameron | C. Praeger | Csaba Schneider
[1] Stewart Wilcox,et al. Reduction of the Hall–Paige conjecture to sporadic simple groups , 2009, 1010.1323.
[2] Brendan D. McKay,et al. A Census of Small Latin Hypercubes , 2008, SIAM J. Discret. Math..
[3] Ian M. Wanless,et al. Autoparatopisms of Quasigroups and Latin Squares , 2017 .
[4] V. G. Vizing. The cartesian product of graphs , 1963 .
[5] Peter M. Neumann,et al. Subgroups of Infinite Symmetric Groups , 1990 .
[6] H. Wilf. On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.
[7] A. Blokhuis,et al. On M.D.S. codes, arcs inPG(n, q) withq even, and a solution of three fundamental problems of B. Segre , 1988 .
[8] B. Bagchi,et al. Latin squares , 2012 .
[9] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .
[10] R. A. Bailey. Relations among partitions , 2017, BCC.
[11] Boxin Tang,et al. Construction of orthogonal and nearly orthogonal Latin hypercubes , 2009 .
[12] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[13] Victor A. Shcherbacov,et al. Elements of Quasigroup Theory and Applications , 2017 .
[14] Alan R. Woods,et al. Maximal Subgroups of Infinite Symmetric Groups , 1990 .
[15] Charles J. Colbourn,et al. Orthogonal Arrays of Index More Than One , 2006 .
[16] Peter J. Cameron,et al. Strongly regular graphs , 2003 .
[17] Group factorisations, uniform automorphisms, and permutation groups of simple diagonal type , 2016, Israel Journal of Mathematics.
[18] Ian M. Wanless,et al. On the Number of Latin Squares , 2005, 0909.2101.
[19] Saieed Akbari,et al. Maximal Subgroups of GL1(D) , 1999 .
[20] R. H. Bruck. Finite nets. II. Uniqueness and imbedding. , 1963 .
[21] B. Welch. The structure , 1992 .
[22] Cheryl E. Praeger,et al. Permutation Groups and Cartesian Decompositions , 2018 .
[23] R. A. Bailey. Association Schemes: Designed Experiments, Algebra and Combinatorics , 2004 .
[24] C. Praeger,et al. THE CONTRIBUTION OF L. G. KOVÁCS TO THE THEORY OF PERMUTATION GROUPS , 2015, Journal of the Australian Mathematical Society.
[25] Peter M. Neumann,et al. AN ENUMERATION THEOREM FOR FINITE GROUPS , 1969 .
[26] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[27] Thomas Neil Throckmorton,et al. Structures of classification data , 1961 .
[28] D. A. Preece,et al. Non-orthogonal graeco-latin designs , 1976 .
[29] C. Praeger,et al. Factorisations of characteristically simple groups , 2002 .
[30] 鈴木 通夫. Structure of a group and the structure of its lattice of subgroups , 1956 .
[31] Martin W. Liebeck,et al. The classification of finite simple Moufang loops , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.
[32] R. A. Bailey,et al. Factorial Design and Abelian Groups , 1985 .
[33] Vincent Duquenne,et al. What can lattices do for experimental designs , 1986 .
[34] M. C. Jordan. Traite des substitutions et des equations algebriques , 1870 .
[35] S. Srinivasan,et al. Maximal subgroups of finite groups , 1990 .
[36] Peter J. Cameron,et al. Random strongly regular graphs? , 2001, Electron. Notes Discret. Math..
[37] Peter J. Cameron,et al. Between primitive and 2-transitive: Synchronization and its friends , 2015, 1511.03184.
[38] Gert Sabidussi,et al. Graph multiplication , 1959 .
[39] S. Shrikhande,et al. THE SHRIKHANDE GRAPH , 2007 .
[40] A. Hora,et al. Distance-Regular Graphs , 2007 .
[41] Cheryl E. Praeger,et al. Diagonal groups and arcs over groups , 2021, Designs, Codes and Cryptography.
[42] P. Cameron,et al. The Hall–Paige conjecture, and synchronization for affine and diagonal groups , 2018, Journal of Algebra.
[43] L. Paige,et al. Complete mappings of finite groups. , 1951 .
[44] K. Phelps. Automorphism free latin square graphs , 1980, Discret. Math..
[45] R. A. Bailey,et al. Orthogonal Partitions in Designed Experiments , 1996, Des. Codes Cryptogr..
[46] BIBLIOGRAPHY OF DESIGNS FOR EXPERIMENTS1 IN THREE DIMENSIONS , 1975 .
[47] Charles Payan,et al. On the chromatic number of cube-like graphs , 1992, Discret. Math..
[48] L. G. Kovács,et al. Wreath decompositions of finite permutation groups , 1989, Bulletin of the Australian Mathematical Society.
[49] D. Preece. Factorial experimentation in second-order Latin cubes , 1989 .
[50] Ching-Shui Cheng,et al. MULTISTRATUM FRACTIONAL FACTORIAL DESIGNS , 2011 .
[51] Anthony B. Evans. The admissibility of sporadic simple groups , 2009 .
[52] R. Fisher. A SYSTEM OF CONFOUNDING FOR FACTORS WITH MORE THAN TWO ALTERNATIVES, GIVING COMPLETELY ORTHOGONAL CUBES AND HIGHER POWERS , 1943 .
[53] Tue Tjur,et al. Analysis of Variance Models in Orthogonal Designs , 1984 .
[54] Cheryl E. Praeger,et al. A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .
[55] D. H. McLain. A characteristically simple group , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[56] M. Aschbacher. OVERGROUPS OF PRIMITIVE GROUPS , 2009, Journal of the Australian Mathematical Society.
[57] P. Cameron. Combinatorics: Topics, Techniques, Algorithms , 1995 .
[58] J. Dénes,et al. Latin squares and their applications , 1974 .
[59] Tullio Ceccherini-Silberstein,et al. Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups , 2014 .
[60] P. Cameron. Asymmetric Latin squares, Steiner triple systems, and edge-parallelisms , 2015, 1507.02190.
[61] Cheryl E. Praeger,et al. Generalized Wreath Products of Permutation Groups , 1983 .
[62] G. P. Erorychev. Proof of the van der Waerden conjecture for permanents , 1981 .
[63] Michael Aschbacher,et al. Finite Group Theory , 1994 .
[64] W. W. Ball,et al. Mathematical Recreations and Essays , 1905, Nature.
[65] SUPPLEMENTARY BIBLIOGRAPHY OF DESIGNS FOR EXPERIMENTS IN THREE DIMENSIONS , 1979 .
[66] D. Robinson. A Course in the Theory of Groups , 1982 .
[67] John A. Nelder,et al. The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[68] R. A. Bailey,et al. Design of comparative experiments , 2008 .
[69] Luis Goddyn,et al. The Chromatic Number of Finite Group Cayley Tables , 2019, Electron. J. Comb..
[70] Steven T. Dougherty,et al. Latin k-hypercubes , 2008, Australas. J Comb..
[71] Lowell J. Paige,et al. A class of simple Moufang loops , 1956 .
[72] G. Mullen,et al. D-Dimensional hypercubes and the Euler and MacNeish conjectures , 1995 .
[73] Dana Randall,et al. Decomposition Methods and Sampling Circuits in the Cartesian Lattice , 2001, MFCS.
[74] Peter J. Cameron,et al. The diagonal graph , 2021, 2101.02451.
[75] D. Preece. Latin squares, Latin cubes, Latin rectangles , 2006 .
[76] J. Covington,et al. SOME MAXIMAL SUBGROUPS OF INFINITE SYMMETRIC GROUPS , 1996 .
[77] Primitive permutation groups of simple diagonal type , 1988 .
[78] S. C. Pearce,et al. Orthogonal designs for three-dimensional experiments , 1973 .