The phasing of heterozygous traits: Algorithms and complexity

Combinatorial haplotyping problems have received great attention in the past few years. We review their definitions and the main results that were obtained for their solution. Haplotyping problems require one to determine a set H of binary vectors (called haplotypes) that explain a set of G of ternary vectors (called genotypes). The number @g(G) of haplotypes to choose from can be exponential with respect to the number of genotypes. We give an exact formula, based on the inclusion-exclusion principle, for determining @g(G).

[1]  Daniel G. Brown,et al.  A New Integer Programming Formulation for the Pure Parsimony Problem in Haplotype Analysis , 2004, WABI.

[2]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[3]  Srinivas Aluru,et al.  Handbook Of Computational Molecular Biology , 2010 .

[4]  R. Karp,et al.  Efficient reconstruction of haplotype structure via perfect phylogeny. , 2002, Journal of bioinformatics and computational biology.

[5]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[6]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[7]  Dan Gusfield,et al.  Haplotyping as perfect phylogeny: conceptual framework and efficient solutions , 2002, RECOMB '02.

[8]  Konstantinos Kalpakis,et al.  Haplotype phasing using semidefinite programming , 2005, Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE'05).

[9]  Shibu Yooseph,et al.  A Survey of Computational Methods for Determining Haplotypes , 2002, Computational Methods for SNPs and Haplotype Inference.

[10]  Giuseppe Lancia,et al.  Haplotyping Populations by Pure Parsimony: Complexity of Exact and Approximation Algorithms , 2004, INFORMS J. Comput..

[11]  Dan Gusfield,et al.  Haplotype Inference by Pure Parsimony , 2003, CPM.

[12]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[13]  Paola Bonizzoni,et al.  The Haplotyping problem: An overview of computational models and solutions , 2003, Journal of Computer Science and Technology.

[14]  Dan Gusfield,et al.  A Practical Algorithm for Optimal Inference of Haplotypes from Diploid Populations , 2000, ISMB.

[15]  RizziRomeo,et al.  Haplotyping for Disease Association , 2008 .

[16]  Harvey J. Greenberg,et al.  Opportunities for Combinatorial Optimization in Computational Biology , 2004, INFORMS J. Comput..

[17]  Dan Gusfield,et al.  Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms , 2001, J. Comput. Biol..

[18]  A. Chakravarti It's raining SNPs, hallelujah? , 1998, Nature Genetics.

[19]  Giuseppe Lancia,et al.  A polynomial case of the parsimony haplotyping problem , 2006, Oper. Res. Lett..

[20]  Shibu Yooseph,et al.  Haplotyping as Perfect Phylogeny: A Direct Approach , 2003, J. Comput. Biol..

[21]  Dan Gusfield,et al.  A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem , 2005, RECOMB.

[22]  Paola Bonizzoni,et al.  Foreword - Special Issue on Bioinformatics , 2004, J. Comput. Sci. Technol..

[23]  Lusheng Wang,et al.  Haplotype inference by maximum parsimony , 2003, Bioinform..

[24]  Ting Chen,et al.  An approximation algorithm for haplotype inference by maximum parsimony , 2005, SAC '05.

[25]  A. Clark,et al.  Inference of haplotypes from PCR-amplified samples of diploid populations. , 1990, Molecular biology and evolution.

[26]  P. Donnelly,et al.  A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.