Reversing the pump dependence of a laser at an exceptional point

When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called exceptional point occurs, which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, as they feature resonant modes and a gain material as their basic constituents. Here we show that exceptional points can be conveniently induced in a photonic molecule laser by a suitable variation of the applied pump. Using a pair of coupled microdisk quantum cascade lasers, we demonstrate that in the vicinity of these exceptional points the coupled laser shows a characteristic reversal of its pump dependence, including a strongly decreasing intensity of the emitted laser light for increasing pump power.

[1]  Q. Hu,et al.  Investigation of possible microcavity effect on lasing threshold of nonradiative-scattering-dominated semiconductor lasers , 2012 .

[2]  J. Wiersig Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. , 2006, Physical review letters.

[3]  Gottfried Strasser,et al.  Two-dimensional broadband distributed-feedback quantum cascade laser arrays , 2011 .

[4]  Z. Musslimani,et al.  Theory of coupled optical PT-symmetric structures. , 2007, Optics letters.

[5]  A. Davies,et al.  Vertical subwavelength mode confinement in terahertz and mid-infrared quantum cascade lasers , 2011 .

[6]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[7]  John L. Reno,et al.  Monolithically integrated solid-state terahertz transceivers , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[8]  G. Strasser,et al.  Subwavelength Microdisk and Microring Terahertz Quantum-Cascade Lasers , 2007, IEEE Journal of Quantum Electronics.

[9]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[10]  K. Vahala Optical microcavities , 2003, Nature.

[11]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[12]  Hong Chen,et al.  Experimental demonstration of a coherent perfect absorber with PT phase transition. , 2014, Physical review letters.

[13]  Oleg N. Kirillov,et al.  Exceptional points in a microwave billiard with time-reversal invariance violation. , 2010, Physical review letters.

[14]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[15]  Werner Schrenk,et al.  Terahertz Active Photonic Crystals for Condensed Gas Sensing , 2011, Sensors.

[16]  Songky Moon,et al.  Observation of an exceptional point in a chaotic optical microcavity. , 2009, Physical review letters.

[17]  O. Schmidt,et al.  Quality-factor enhancement of supermodes in coupled microdisks. , 2011, Optics letters.

[18]  Observation of resonance trapping in an open microwave cavity , 2000, Physical review letters.

[19]  J. Wiersig,et al.  Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities , 2011, 1105.3819.

[20]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[21]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[22]  Eva-Maria Graefe,et al.  Mixed-state evolution in the presence of gain and loss. , 2012, Physical Review Letters.

[23]  Xavier Marcadet,et al.  Phase-resolved measurements of stimulated emission in a laser , 2007, Nature.

[24]  Alexei A. Mailybaev,et al.  Time-asymmetric quantum-state-exchange mechanism , 2013, 1302.1394.

[25]  V. Tamošiūnas,et al.  Electrically controllable photonic molecule laser. , 2009, Optics express.

[26]  Sungsam Kang,et al.  Quasieigenstate coalescence in an atom-cavity quantum composite. , 2010, Physical review letters.

[27]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[28]  Werner Schrenk,et al.  Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector , 2013, Sensors.

[29]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[30]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[31]  Y. Chong,et al.  General linewidth formula for steady-state multimode lasing in arbitrary cavities. , 2012, Physical review letters.

[32]  M. Berry Mode degeneracies and the petermann excess-noise factor for unstable lasers , 2003 .

[33]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[34]  Li Ge,et al.  Pump-induced exceptional points in lasers. , 2011, Physical review letters.

[35]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[36]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[37]  Philipp Ambichl,et al.  Breaking of PT-symmetry in bounded and unbounded scattering systems , 2013, 1307.0149.

[38]  E. Brändas Non-hermitian quantum mechanics , 2012 .

[39]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[40]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.

[41]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[42]  Experimental observation of lasing shutdown via asymmetric gain , 2014 .

[43]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[44]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[45]  Hans Wenzel,et al.  Mechanisms of fast self pulsations in two-section DFB lasers , 1996 .

[46]  Cho,et al.  High-power directional emission from microlasers with chaotic resonators , 1998, Science.

[47]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[48]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[49]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[50]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[51]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[52]  H. Schomerus Quantum noise and self-sustained radiation of PT-symmetric systems. , 2010, Physical review letters.