Do prokaryotes contain microtubules?

In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

[1]  J. Lutkenhaus,et al.  Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  N. Somerson,et al.  Freeze-fracture confirmation of the presence of a core in the specialized tip structure of Mycoplasma pneumoniae , 1983, Journal of Bacteriology.

[3]  L. Margulis,et al.  Microtubules in prokaryotes. , 1978, Science.

[4]  D. Williamson Unusual Fibrils from the Spirochete-Like Sex Ratio Organism , 1974, Journal of bacteriology.

[5]  A. Lwoff,et al.  Biochemistry and physiology of protozoa. , 1951 .

[6]  H. Neimark Extraction of an actin-like protein from the prokaryote Mycoplasma pneumoniae. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. MacRae,et al.  Ultrastructural studies of Chondromyces crocatus vegetative cells. , 1975, Canadian journal of microbiology.

[8]  S. Chatterjee,et al.  Rhapidosomes in Vibrio species. , 1972, Canadian journal of microbiology.

[9]  K. Hovind-Hougen Determination by means of electron microscopy of morphological criteria of value for classification of some spirochetes, in particular treponemes. , 1976, Acta pathologica et microbiologica Scandinavica. Supplement.

[10]  R. Townsend,et al.  Morphology and ultrastructure of helical and nonhelical strains of Spiroplasma citri , 1980, Journal of bacteriology.

[11]  N. M. Ovcinnikov,et al.  Treponema pertenue under the electron microscope. , 1970, The British journal of venereal diseases.

[12]  I. Heath Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis. , 1980, International review of cytology.

[13]  M. Kessel,et al.  Cytoplasmic helical structure associated with Acholeplasma laidlawii , 1981, Journal of bacteriology.

[14]  J. Maniloff,et al.  Gliding mycoplasmas are inhibited by cytochalasin B and contain a polymerizable protein fraction. , 1979, Journal of supramolecular structure.

[15]  F. Suzuki,et al.  Microtubules with 15 subunits in cockroach epidermal cells , 1975, The Journal of cell biology.

[16]  L. Margulis,et al.  Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus. , 1990, Symbiosis.

[17]  K. Hovind-Hougen Leptospiraceae, a New Family to Include Leptospira Noguchi 1917 and Leptonema gen. nov. , 1979 .

[18]  J. Maniloff Cytoskeletal elements in mycoplasmas and other prokaryotes. , 1981, Bio Systems.

[19]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[20]  R. Holmgren,et al.  Ultrastructure ofAzotobacter vinelandii , 1970 .

[21]  R. Colwell,et al.  Intracytoplasmic Membrane Structures in Vibrio marinus , 1970, Journal of bacteriology.

[22]  A. G. Marr,et al.  LOCATION OF ENZYMES IN AZOTOBACTER AGILIS , 1962 .

[23]  J. Mercado-Blanco,et al.  A protein involved in stabilization of a large non-symbiotic plasmid of Rhizobium meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binding proteins. , 1994, Gene.

[24]  E. Kellenberger,et al.  ON THE FINE STRUCTURE OF NORMAL AND "POLYMERIZED" TAIL SHEATH OF PHAGE T4. , 1964, Journal of ultrastructure research.

[25]  W. van Iterson,et al.  BASAL BODIES OF BACTERIAL FLAGELLA IN PROTEUS MIRABILIS , 1966, The Journal of cell biology.

[26]  Y. Kanda,et al.  Core‐like and Microtubular Structures in a Stable L‐form of Escherichia coli , 1979, Microbiology and immunology.

[27]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[28]  K. Hougen Further observations on the ultrastructure of Treponema pallidum nichols. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[29]  T. Jensen Cyanobacterial cell inclusions of irregular occurence: systematic and evolutionary implications , 1984 .

[30]  K. Hovind-Hougen Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. , 1984, The Yale journal of biology and medicine.

[31]  N. M. Ovcinnikov,et al.  Further studies of the morphology of Treponema pallidum under the electron microscope. , 1969, The British journal of venereal diseases.

[32]  R. Townsend,et al.  Morphology andUltrastructure ofHelical andNonhelical Strains ofSpiroplasma citri , 1980 .

[33]  L. C. Morejohn,et al.  Tubulins from Plants, Fungi, and Protists , 1986 .

[34]  J. Bové,et al.  Morphology, Ultrastructure, and Bacteriophage Infection of the Helical Mycoplasma-Like Organism (Spiroplasma citri gen. nov., sp. nov.) Cultured from “Stubborn” Disease of Citrus , 1973, Journal of bacteriology.

[35]  A. Birch‐Andersen,et al.  Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov , 1982, Journal of clinical microbiology.

[36]  Yixian Zheng,et al.  γ-Tubulin is present in Drosophila melanogaster and homo sapiens and is associated with the centrosome , 1991, Cell.

[37]  L. Rothschild Handbook of protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi , 1990 .

[38]  W. van Iterson,et al.  A "MICROTUBULE" IN A BACTERIUM , 1967, The Journal of cell biology.

[39]  S. E. Wiegand,et al.  Electron microscopic anatomy of pathogenic Treponema pallidum. , 1972, The Journal of investigative dermatology.

[40]  C. C. Bowen,et al.  Cytology of Blue-green Algae , 1970 .

[41]  Tubular elements - a new structure in blue-green algal cells. , 1977, Journal of cell science.

[42]  A. Bailey‐Watts,et al.  Freshwater Primary Production by a Blue–Green Alga of Bacterial Size , 1968, Nature.

[43]  Lynn Margulis,et al.  Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons , 1992 .

[44]  H. J. Jensen,et al.  Electron microscopy of Treponema cuniculi. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[45]  P. Jurtshuk,et al.  Microtubule in Azotobacter vinelandii strain O , 1967, Journal of bacteriology.

[46]  L. Margulis Serial Endosymbiotic Theory (SET) - Undulipodia, Mitosis and Their Microtubule Systems Preceded Mitochondria , 1988 .

[47]  L. Margulis Undulipodia, flagella and cilia. , 1980, Bio Systems.

[48]  G. Bertoloni,et al.  Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum. , 1980, Journal of general microbiology.

[49]  M. Little An evaluation of tubulin as a molecular clock. , 1985, Bio Systems.

[50]  M. Little,et al.  Comparative analysis of tubulin sequences. , 1988, Comparative biochemistry and physiology. B, Comparative biochemistry.

[51]  R. Obar,et al.  The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family. , 1993, Bio Systems.

[52]  A. Birch‐Andersen,et al.  Electron microscopy of endoflagella and microtubules in Treponema reiter. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[53]  B. Oakley,et al.  Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans , 1989, Nature.

[54]  T. Cavalier-smith,et al.  The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. , 1978, Bio Systems.

[55]  R. E. Stephens,et al.  Biochemical characterization of tektins from sperm flagellar doublet microtubules , 1987, The Journal of cell biology.

[56]  R. Lewin,et al.  Formation of rhapidosomes in Saprospira. , 1965, Canadian journal of microbiology.

[57]  A. Delk,et al.  Characterization of rhapidosomes of Saprospira grandis. , 1972, Journal of molecular biology.

[58]  J. Mcintosh,et al.  An introduction to microtubules. , 1974, Journal of supramolecular structure.

[59]  A. Liss Release of a Group 1 Mycoplasma Virus from Acholeplasma laidlawii After Treatment with Mitomycin C , 1981, Journal of virology.

[60]  L. Margulis,et al.  Large Symbiotic Spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina , 1992 .

[61]  L. Wilson Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. , 1970, Biochemistry.

[62]  J. Tucker Development and deployment of cilia, basal bodies, and other microtubular organelles in the cortex of the ciliate Nassula. , 1971, Journal of cell science.

[63]  P. Forterre,et al.  Antitumor drugs inhibit the growth of halophilic archaebacteria. , 1987, European journal of biochemistry.

[64]  K. Hougen The ultrastructure of cultivable treponemes. 2. Treponema calligyrum, Treponema minutum and Treponema microdentium. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[65]  T. Jensen,et al.  Microtubule-like Inclusions in Isolates of the Blue-green Bacteria Anabaena and Nostoc , 1980 .

[66]  J. Pate,et al.  THE FINE STRUCTURE OF CHONDROCOCCUS COLUMNARIS , 1967, The Journal of cell biology.

[67]  A. Birch‐Andersen,et al.  Electron microscopy of Leptospira. 1. Leptospira strain Pomona. , 1973, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[68]  B. Oakley,et al.  Identification of an amino acid substitution in the benA, beta-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. , 1990, Cell motility and the cytoskeleton.

[69]  T. Jensen,et al.  The fine structure of striated microtubules and sleeve bodies in several species of Anabaena. , 1976, Journal of ultrastructure research.

[70]  E. Szathmáry Early evolution of microtubules and undulipodia. , 1987, Bio Systems.

[71]  D. Archer,et al.  Purification and preliminary characterization of Spiroplasma fibrils , 1980, Journal of bacteriology.

[72]  A. Bleiweis,et al.  Ultrastructural, physiological, and cytochemical characterization of cores in group D streptococci , 1977, Journal of bacteriology.

[73]  R. P. Burchard,et al.  Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus , 1977, Journal of bacteriology.

[74]  R. Lewin Rod-shaped Particles in Saprospira , 1963, Nature.

[75]  M. Kirschner,et al.  In vitro reconstitution of centrosome assembly and function: The central role of γ-tubulin , 1994, Cell.

[76]  A. Rodwell,et al.  Striated fibers of the rho form of Mycoplasma: in vitro reassembly, composition, and structure , 1975, Journal of bacteriology.

[77]  L. N. Khakhina,et al.  Concepts of symbiogenesis : a historical and critical study of the research of Russian botanists , 1992 .

[78]  A. M. Collier,et al.  Ultrastructural study of Mycoplasma pneumoniae in organ culture , 1976, Journal of bacteriology.

[79]  H. J. Jensen,et al.  Ultrastructure of cells of Treponema pertenue obtained from experimentally infected hamsters. , 2009, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[80]  D. Weiss,et al.  Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport , 1985, The Journal of cell biology.

[81]  L. Margulis,et al.  Composite, large spirochetes from microbial mats: spirochete structure review. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Jensen Cell Inclusions in the Cyanobacteria , 1984 .