S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida

— New observations of the S-type asteroids Gaspra and Ida, especially, by the Galileo spacecraft demonstrate that a “space weathering” process operates, which modifies the reflectance spectra of fresh material to be redder, straighter, and have shallower absorption bands. The weathering process appears similar to but less potent than that observed on the Moon. It operates in the sense that it would tend to convert spectra of ordinary chondrites (OC) to having the spectral traits of S-type asteroids. These results appear to resolve the major obstacles of the long standing “S-type conundrum” about the provenance of ordinary chondrite meteorites. A wide body of recent research, which is reviewed here, builds on previous meteoritical evidence to support a new, developing consensus that the larger S-type asteroids are a diverse assortment of silicaceous assemblages, which includes the ordinary chrondite parent bodies. Recent fairly realistic laboratory simulations of space weathering processes have changed OC spectra to resemble S-type spectra. J. F. Bell's highly regarded earlier paradigm that OC parent bodies would be found only among sub-10 km main-belt asteroids has been tested by an extensive observational survey by R. Binzel and his proteges; the result is that no small, main-belt analog for the OCs has been found, not even the somewhat OC-like object Boznemcova. This article reviews the history of the S-type conundrum, which set the stage for Galileo's historic flybys. I review the findings about Gaspra and Ida, including results about their geology, their geophysical structure and probable origins, and about Ida's small moonlet, Dactyl. Density constraints on Ida set by Dactyl's orbit rule out (for Ida, at least) the classic view of S-types as metallic, stripped cores of differentiated precursor asteroids. New analysis of the Galileo spectral images of Ida is presented that provides strong evidence that space weathering occurs on Ida, and that Ida, and the Koronis family asteroids in general, are plausibly OC-like in composition. After reviewing 1990s developments on the S-type conundrum, I advocate a new perspective that the ordinary chondrite parent bodies are among the S-type asteroids, a diverse grouping that also contains other silicaceous and silicate/metal assemblages, presumably including various stony-irons and primitive achondrites represented in meteorite collections; Gaspra may be such a metal-rich assemblage.

[1]  N. T. Bobrovnikoff The spectra of minor planets , 1929 .

[2]  W. Egan,et al.  Photometric and polarimetric properties of the Bruderheim chondritic meteorite , 1973 .

[3]  M. E. Davies,et al.  Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl , 1995, Nature.

[4]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[5]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[6]  Francesco Marzari,et al.  Collisional Evolution of Asteroid Families , 1995 .

[7]  A. McEwen,et al.  Galileo Photometry of Asteroid 243 Ida , 1996 .

[8]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[9]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[10]  John W. Salisbury,et al.  Meteorite-asteroid spectral comparison: The effects of comminution, melting, and recrystallization , 1992 .

[11]  T. Gehrels,et al.  Minor planets and related objects. XVI - Polarimetric diameters , 1974 .

[12]  R. Greeley,et al.  Discovery of Grooves on Gaspra , 1994 .

[13]  M. Gaffey,et al.  Spectrophotometry (0.33 to 1.07 μm) of 433 Eros and compositional implications , 1976 .

[14]  M. Skrutskie,et al.  Discovery of a Main-Belt Asteroid Resembling Ordinary Chondrite Meteorites , 1993, Science.

[15]  A. McEwen,et al.  Ida and Dactyl: Spectral reflectance and color variations , 1996 .

[16]  B. Clark,et al.  Interplanetary weathering: Surface erosion in outer space , 1996 .

[17]  David L. Rabinowitz,et al.  The size distribution of the earth-approaching asteroids , 1993 .

[18]  G. Wetherill ASTEROIDAL SOURCE OF ORDINARY CHONDRITES , 1985 .

[19]  D. Morrison,et al.  Taxonomy of asteroids , 1978 .

[20]  I. Shapiro,et al.  Asteroid 1986 DA: Radar Evidence for a Metallic Composition , 1991, Science.

[21]  Hiroshi Takeda,et al.  Reflectance spectroscopy and mineralogy of primitive achondrites-lodranites , 1991 .

[22]  P. Farinella,et al.  Wavy size distributions for collisional systems with a small-size cutoff , 1994 .

[23]  C. Murray,et al.  Variation of the UBV colors of S-class asteroids with semimajor axis and diameter , 1985 .

[24]  A. McEwen,et al.  Geology of 243 Ida , 1996 .

[25]  Torrence V. Johnson,et al.  A Review of Spectrophotometric Studies of Asteroids , 1971 .

[26]  A. McEwen,et al.  The Geology of Gaspra , 1994 .

[27]  M. Gaffey,et al.  Near-Earth Asteroids: Possible Sources from Reflectance Spectroscopy , 1985, Science.

[28]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[29]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[30]  R. Sullivan,et al.  The Shape of Ida , 1996 .

[31]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[32]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[33]  The Formation and Collisional/Dynamical Evolution of the Ida/Dactyl System as Part of the Koronis Family , 1996 .

[34]  M. Gaffey Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites , 1984 .

[35]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[36]  H. Haack,et al.  Catastrophic fragmentation of asteroids: evidence from meteorites , 1994 .

[37]  B. Hapke Inferences From Optical Properties Concerning The Surface Texture and Composition of Asteroids , 1971 .

[38]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[39]  H. Haack,et al.  Metallographic Cooling Rates Of Iab Iron-Meteorites , 1995 .

[40]  Laboratory simulations of lunar darkening processes , 1993 .

[41]  C. Pieters,et al.  Optical Effects of Regolith Processes on S-Asteroids as Simulated by Laser Shots on Ordinary Chondrite and Other Mafic Materials , 1996 .

[42]  C. Chapman Asteroids as meteorite parent-bodies: the astronomical perspective , 1976 .

[43]  Steven J. Ostro,et al.  Shape and Non-Principal Axis Spin State of Asteroid 4179 Toutatis , 1995, Science.

[44]  D. Morrison Radiometric diameters and albedos of 40 asteroids. , 1974 .

[45]  L. McFadden Spectral Reflectance of Near-Earth Asteroids: Implications for Composition, Origin and Evolution , 1983 .

[46]  Gerhard Neukum,et al.  The Galileo Solid-State Imaging experiment , 1992 .

[47]  Jack Wisdom,et al.  Meteorites may follow a chaotic route to Earth , 1985, Nature.

[48]  D. Storzer,et al.  244Pu fission track thermometry and its application to stony meteorites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  M. Barucci,et al.  Koronis family : reflectance spectra of 243 Ida, 1442 Corvina and 2226 Cunitza , 1993 .

[50]  R. Binzel,et al.  Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites , 1996, Science.

[51]  T. Johnson,et al.  Soil maturity and planetary regoliths: the Moon, Mercury, and the asteroids. , 1977 .

[52]  M. Gaffey,et al.  Asteroid surface materials: Mineralogical characterizations from reflectance spectra , 1977 .

[53]  E. Anders Most stony meteorites come from the asteroid belt , 1978 .

[54]  J. Bell,et al.  A spectral analysis of ordinary chondrites, S‐type asteroids, and their component minerals: Genetic implications , 1992 .

[55]  H. McSween Redox effects in ordinary chondrites and implications for asteroid spectrophotometry , 1992 .

[56]  Richard E. Young,et al.  Space Science Reviews Volume on Galileo Mission Overview , 1992 .

[57]  Daniel D. Durda,et al.  The Formation of Asteroidal Satellites in Catastrophic Collisions , 1996 .

[58]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[59]  E. Anders Do stony meteorites come from comets , 1974 .

[60]  P. Farinella,et al.  Delivery of meteorites through the nu 6 secular resonance , 1994 .

[61]  Fragment jets from catastrophic break-up events and the formation of asteroid binaries and families , 1993 .

[62]  Asteroid 6 Hebe: Spectral Evaluation of the Prime Large Mainbelt Ordinary Chondrite Parent Body Candidate with Implications from Space Weathering of Gaspra and the Ida-Dactyl System , 1996 .

[63]  W. Smythe,et al.  Near-Infrared Mapping Spectrometer experiment on Galileo , 1992 .

[64]  R. Binzel,et al.  Spectral Variations within the Koronis Family: Possible Implications for the Surface Colors of Asteroid 243 Ida , 1993 .

[65]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[66]  C. Chapman Asteroid size distribution: Implications for the origin of stony-iron and iron meteorites , 1974 .

[67]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[68]  Clark R. Chapman,et al.  Galileo Photometry of Asteroid 951 Gaspra , 1994 .

[69]  Spectral alteration effects in chondritic gas-rich breccias - Implications for S-Class and Q-Class asteroids , 1988 .

[70]  Clark R. Chapman,et al.  Galileo's Encounter with 951 Gaspra: Overview , 1994 .

[71]  S. Love,et al.  Catastrophic Impacts on Gravity Dominated Asteroids , 1996 .

[72]  J. Bell,et al.  Modeling of S-type asteroid spectra using primitive achondrites and iron meteorites , 1993 .

[73]  M. Gaffey,et al.  Asteroids: Surface Composition from Reflection Spectroscopy , 1974, Science.

[74]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[75]  Steven J. Ostro,et al.  Planetary radar astronomy , 1983 .

[76]  Kiyotsugu Hirayama,et al.  Groups of asteroids probably of common origin , 1918 .

[77]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[78]  U. Fink,et al.  Spectroscopic evidence for two achondrite parent bodies: asteroids 349 Dembowska and 4 Vesta , 1980 .

[79]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[80]  T. McCord,et al.  Asteroids: spectral reflectance and color characteristics. II. , 1975 .

[81]  Clark R. Chapman,et al.  The Shape of Gaspra , 1994 .

[82]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[83]  S. Murchie,et al.  Spectral properties and rotational spectral heterogeneity of 433 Eros , 1996 .

[84]  M. Gaffey A systematic study of the spectral reflectivity characteristics of the meteorite classes with applications to the interpretation of asteroid spectra for mineralogical and petrological information , 1974 .

[85]  Daniel D. Durda,et al.  EROSION AND EJECTA REACCRETION ON 243 IDA AND ITS MOON , 1996 .

[86]  R. Binzel Collisional evolution in the Eos and Koronis asteroid families: observational and numerical results , 1988 .

[87]  R. Greenberg,et al.  Asteroids and meteorites - Parent bodies and delivered samples , 1983 .

[88]  K. Keil,et al.  Lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting , 1983 .

[89]  J. S. Dohnanyi Fragmentation and Distribution of Asteroids , 1971 .

[90]  Dennis V. Byrnes,et al.  The Discovery and Orbit of 1993 (243)1 Dactyl , 1996 .

[91]  C. Chapman Asteroid collisions, craters, regoliths, and lifetimes , 1978 .

[92]  D. Britt,et al.  Reflection spectra of shocked ordinary chondrites and their relationship to asteroids , 1992 .

[93]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[94]  George W. Wetherill,et al.  Where do the Apollo objects come from , 1988 .

[95]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[96]  G. J. Taylor,et al.  Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .

[97]  P. Farinella,et al.  Meteorites from the asteroid 6 Hebe , 1993 .

[98]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[99]  J. Wood Chondrites - Their metallic minerals, thermal histories, and parent planets. , 1967 .

[100]  H. Haack,et al.  Meteoritic, Asteroidal, and Theoretical Constraints on the 500 Ma Disruption of theLChondrite Parent Body , 1996 .

[101]  Erzsébet Merényi,et al.  Classification of asteroid spectra using a neural network , 1994 .

[102]  Carle M. Pieters,et al.  METEORITE AND ASTEROID REFLECTANCE SPECTROSCOPY: Clues to Early Solar System Processes , 1994 .

[103]  J. Veverka,et al.  Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida , 1995, Nature.

[104]  J. Gradie AN ASTROPHYSICAL STUDY OF THE MINOR PLANETS IN THE EOS AND KORONIS ASTEROID FAMILIES , 1978 .

[105]  M. Kivelson,et al.  Magnetic Field Signatures Near Galileo's Closest Approach to Gaspra , 1993, Science.

[106]  T. McCord,et al.  Minor planets and related objects. X - Spectrophotometric study of the composition of /1685/ Toro. , 1973 .

[107]  Clark R. Chapman,et al.  Dactyl: Galileo Observations of Ida's Satellite , 1996 .

[108]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .