Un critère de rupture multiaxial pour matériaux fragiles

Most brittle materials show little straining at failure and an ultimate strength that depends upon loading geometry. The surface that defines failure in stress space has a characteristic shape that may be defined by an appropriate mathematical criterion. In this paper, the authors present a simple multiaxial criterion formulated from two quadric functions. Under conventional triaxial compression, the MSDP criterion reduces to the Mises-Schleicher criterion at low mean stress and it takes the shape of the conical Nadai-Drucker-Prager criterion at higher mean stress. The MSDP criterion can be expressed from the three principal stresses or from the usual invariantsI1, J2, and J3. It includes four characteristic parameters, each having a particular significance regarding material properties. The validity of the criterion is shown using experimental results taken from the literature on rock, concrete, and grey cast iron.Key words: failure, brittle materials, rock, concrete, cast iron.

[1]  N. Spencer,et al.  Ionosphere electron temperature measurements and their implications , 1963 .

[2]  Jacek Skrzypek,et al.  Plasticity and Creep Theory Examples and Problems , 1993 .

[3]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  J. H. Lee,et al.  Some Exact and Approximate Solutions for the Modified von Mises Yield Criterion , 1988 .

[5]  B. J. Carter,et al.  Fitting strength criteria to intact rock , 1991 .

[6]  Z. Bieniawski Estimating the strength of rock materials , 1974 .

[7]  Kiyoo Mogi,et al.  Effect of the triaxial stress system on the failure of dolomite and limestone , 1971 .

[8]  Michel Aubertin,et al.  Constitutive Equations With Internal State Variables for the Inelastic Behavior of Soft Rocks , 1994 .

[9]  U. Hunsche,et al.  Uniaxial and Triaxial Creep and Failure Tests on Rock: Experimental Technique and Interpretation , 1994 .

[10]  R. M. Zimmerman,et al.  Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions , 1970 .

[11]  Hsien-Yang Yeh,et al.  Development of a new yielding criterion: The Yeh-Stratton criterion , 1994 .

[12]  P. Meredith Fracture and failure of brittle polycrystals: an overview , 1990 .

[13]  M. Gamache,et al.  Parameter determination for nonlinear stress criteria using a simple regression tool , 2000 .

[14]  N. Barton,et al.  The shear strength of rock joints in theory and practice , 1977 .

[15]  Poul V. Lade,et al.  Three-Parameter Failure Criterion for Concrete , 1982 .

[16]  N. S. Ottosen A Failure Criterion for Concrete , 1977 .

[17]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[18]  Michel Aubertin,et al.  A damage initiation criterion for low porosity rocks , 1997 .

[19]  Chunlin Li,et al.  Deformation of brittle rocks under compression - with particular reference to microcracks , 1993 .

[20]  I. W. Johnson Comparison of Two Strength Criteria for Intact Rock , 1985 .

[21]  B Bresler,et al.  STRENGTH OF CONCRETE UNDER COMBINED STRESS , 1958 .

[22]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[23]  J. L. F. Freire,et al.  Yield behavior of photoplastic materials , 1980 .

[24]  A. Nádai Theory of flow and fracture of solids , 1950 .

[25]  Wai-Fah Chen,et al.  CONSTITUTIVE RELATIONS FOR CONCRETE , 1975 .

[26]  Arcady Dyskin,et al.  Mechanics of 3-D crack growth under compressive loads , 1996 .

[27]  R. Carmichael CRC handbook of physical properties of rocks , 1982 .

[28]  Michel Aubertin,et al.  Formulation and application of a short-term strength criterion for isotropic rocks , 1999 .

[29]  Ferdinando Stassi-D'Alia,et al.  Flow and fracture of materials according to a new limiting condition of yelding , 1967 .

[30]  J. Byerlee Brittle-ductile transition in rocks , 1968 .

[31]  B. Ladanyi,et al.  Simulation Of Shear Behavior Of A Jointed Rock Mass , 1969 .

[32]  W. F. Brace,et al.  A note on brittle crack growth in compression , 1963 .

[33]  H. E. Hjelm Yield Surface for Grey Cast Iron Under Biaxial Stress , 1994 .

[34]  R. Goodman Introduction to Rock Mechanics , 1980 .

[35]  J. Lee Characterization of strain hardening for a simple pressure-sensitive plasticity model , 1989 .

[36]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[37]  W. F. Riley,et al.  Optical response and yield behavior of a polyester model material , 1977 .

[38]  E. T. Brown,et al.  EMPIRICAL STRENGTH CRITERION FOR ROCK MASSES , 1980 .

[39]  P. Theocaris Failure criteria for isotropic bodies revisited , 1995 .

[40]  Edward C. Ting,et al.  An Elastic-Fracture Model for Concrete , 1979 .

[41]  Charles Fairhurst,et al.  On the validity of the ‘Brazilian’ test for brittle materials , 1964 .

[42]  S. Murrell Brittle-to-ductile transitions in polycrystalline non-metallic materials , 1990 .

[43]  Chandrakant S. Desai,et al.  Constitutive Model for Rocks , 1987 .

[44]  R. S. Raghava,et al.  A macroscopic yield criterion for crystalline polymers , 1973 .

[45]  I. Johnston Strength of Intact Geomechanical Materials , 1985 .