IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations

Abstract. Based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5)-generation previous Institut Pierre Simon Laplace (IPSL) Earth system model, we designed a new version, IPSL-CM5A2, aiming at running multi-millennial simulations typical of deep-time paleoclimate studies. Three priorities were followed during the setup of the model: (1) improving the overall model computing performance, (2) overcoming a persistent cold bias depicted in the previous model generation and (3) making the model able to handle the specific continental configurations of the geological past. These developments include the integration of hybrid parallelization Message Passing Interface – Open Multi-Processing (MPI-OpenMP) in the atmospheric model of the Laboratoire de Météorologie Dynamique (LMDZ), the use of a new library to perform parallel asynchronous input/output by using computing cores as “I/O servers” and the use of a parallel coupling library between the ocean and the atmospheric components. The model, which runs with an atmospheric resolution of 3.75∘×1.875∘ and 2 to 0.5∘ in the ocean, can now simulate ∼100 years per day, opening new possibilities towards the production of multi-millennial simulations with a full Earth system model. The tuning strategy employed to overcome a persistent cold bias is detailed. The confrontation of a historical simulation to climatological observations shows overall improved ocean meridional overturning circulation, marine productivity and latitudinal position of zonal wind patterns. We also present the numerous steps required to run IPSL-CM5A2 for deep-time paleoclimates through a preliminary case study for the Cretaceous. Namely, specific work on the ocean model grid was required to run the model for specific continental configurations in which continents are relocated according to past paleogeographic reconstructions. By briefly discussing the spin-up of such a simulation, we elaborate on the requirements and challenges awaiting paleoclimate modeling in the next years, namely finding the best trade-off between the level of description of the processes and the computing cost on supercomputers.

[1]  S. Bony,et al.  Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model , 2020, Journal of Advances in Modeling Earth Systems.

[2]  F. Chéruy,et al.  LMDZ6A: The Atmospheric Component of the IPSL Climate Model With Improved and Better Tuned Physics , 2020, Journal of Advances in Modeling Earth Systems.

[3]  L. Bopp,et al.  Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath , 2020, Climate of the Past.

[4]  C. Waelbroeck,et al.  Carbon isotopes and Pa∕Th response to forced circulation changes: a model perspective , 2020 .

[5]  T. Andrews,et al.  Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models , 2020, Geophysical Research Letters.

[6]  J. Kutzbach,et al.  African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments , 2020, Proceedings of the National Academy of Sciences.

[7]  L. Bopp,et al.  Stripping back the Modern to reveal Cretaceous climate and temperature gradient underneath , 2020 .

[8]  P. Valdes,et al.  Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison , 2019, Climate of the Past.

[9]  F. Roquet,et al.  Toward global maps of internal tide energy sinks , 2019, Ocean Modelling.

[10]  C. Waelbroeck,et al.  Carbon isotopes and Pa / Th response to forced circulation changes: a model perspective , 2019 .

[11]  A. M. Haywood,et al.  What can Palaeoclimate Modelling do for you? , 2019, Earth Systems and Environment.

[12]  L. Husson,et al.  Impact of the Sunda Shelf on the Climate of the Maritime Continent , 2019, Journal of Geophysical Research: Atmospheres.

[13]  C. Risi,et al.  Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene , 2019, Science.

[14]  Gregory J. L. Tourte,et al.  The DeepMIP contribution to PMIP4 , 2017 .

[15]  S. Szopa,et al.  Role of the stratospheric chemistry–climate interactions in the hot climate conditions of the Eocene , 2018, Climate of the Past.

[16]  A. Bodas‐Salcedo,et al.  Critical Southern Ocean climate model biases traced to atmospheric model cloud errors , 2018, Nature Communications.

[17]  G. Krinner,et al.  Striking stationarity of large-scale climate model bias patterns under strong climate change , 2018, Proceedings of the National Academy of Sciences.

[18]  J. Mignot,et al.  North Atlantic Ocean Internal Decadal Variability: Role of the Mean State and Ocean‐Atmosphere Coupling , 2018, Journal of Geophysical Research: Oceans.

[19]  H. Goosse,et al.  Ocean as the main driver of Antarctic ice sheet retreat during the Holocene , 2018, Global and Planetary Change.

[20]  Fabio Crameri,et al.  Geodynamic diagnostics, scientific visualisation and StagLab 3.0 , 2018 .

[21]  L. Bopp,et al.  Meridional Contrasts in Productivity Changes Driven by the Opening of Drake Passage , 2018 .

[22]  Fabio Crameri,et al.  Geodynamic diagnostics, scientific visualisation and StagLab 3.0 , 2018 .

[23]  M. Crucifix,et al.  Emulation of long-term changes in global climate: application to the late Pliocene and future , 2017 .

[24]  Gregory J. L. Tourte,et al.  The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0 , 2017 .

[25]  L. Bopp,et al.  Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  G. Lohmann,et al.  Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison , 2017 .

[27]  G. Haug,et al.  Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene , 2017, Science Advances.

[28]  D. Lunt,et al.  Quantifying the Mediterranean freshwater budget throughout the late Miocene: New implications for sapropel formation and the Messinian Salinity Crisis , 2017 .

[29]  G. Ramstein,et al.  Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO 2 Pliocene background climate , 2017 .

[30]  A. Turner,et al.  Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble , 2017, Climate Dynamics.

[31]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[32]  P. Uotila,et al.  Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2 , 2017 .

[33]  C. Cassou,et al.  Influence of ENSO on the Pacific decadal oscillation in CMIP models , 2017, Climate Dynamics.

[34]  Giovanni Aloisio,et al.  CPMIP: measurements of real computational performance of Earth system models in CMIP6 , 2017 .

[35]  Gregory J. L. Tourte,et al.  The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0) , 2017 .

[36]  T. Fichefet,et al.  Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model , 2016 .

[37]  B. Otto‐Bliesner,et al.  The cause of Late Cretaceous cooling: A multimodel-proxy comparison , 2016 .

[38]  L. Bopp,et al.  From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates , 2016 .

[39]  Giovanni Aloisio,et al.  CPMIP: Measurements of Real Computational Performance of Earth System Models , 2016 .

[40]  M. Claussen,et al.  Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations , 2016 .

[41]  C. Brierley,et al.  Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia , 2016 .

[42]  K. Anchukaitis,et al.  North Pacific decadal variability in the CMIP5 last millennium simulations , 2016, Climate Dynamics.

[43]  W. Hobbs,et al.  An Energy Conservation Analysis of Ocean Drift in the CMIP5 Global Coupled Models , 2016 .

[44]  M. Werner,et al.  Glacial–interglacial changes in H 2 18 O, HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model , 2016 .

[45]  J. Dufresne,et al.  Air moisture control on ocean surface temperature, hidden key to the warm bias enigma , 2015 .

[46]  A. Broccoli,et al.  Using Single-Forcing GCM Simulations to Reconstruct and Interpret Quaternary Climate Change , 2015 .

[47]  Rachel Flecker,et al.  Orbital control on late Miocene climate and the North African monsoon: Insight from an ensemble of sub-precessional simulations , 2015 .

[48]  Gurvan Madec,et al.  The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities , 2015 .

[49]  E. Guilyardi,et al.  Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic , 2015 .

[50]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[51]  J. Kiehl,et al.  Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: Congruence of geologic data and climate models , 2015 .

[52]  H. Douville,et al.  Development and evaluation of CNRM Earth system model – CNRM-ESM1 , 2015 .

[53]  L. Bopp,et al.  Including an ocean carbon cycle model into iLOVECLIM (v1.0) , 2015 .

[54]  Jason Lowe,et al.  Nonlinearity of ocean heat uptake during warming and cooling in the FAMOUS climate model , 2015 .

[55]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[56]  C. Deser,et al.  Evaluating Modes of Variability in Climate Models , 2014 .

[57]  J. Buoncristiani,et al.  Effect of the Ordovician paleogeography on the (in)stability of the climate , 2014 .

[58]  H. Renssen,et al.  Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model , 2014, Nature Communications.

[59]  P. Valdes,et al.  Topography's crucial role in Heinrich Events , 2014, Proceedings of the National Academy of Sciences.

[60]  A. Timmermann,et al.  The Holocene temperature conundrum , 2014, Proceedings of the National Academy of Sciences.

[61]  C. Dumas,et al.  The respective role of atmospheric carbon dioxide and orbital parameters on ice sheet evolution at the Eocene-Oligocene transition , 2014 .

[62]  J. Varekamp,et al.  Late Holocene sea level variability and Atlantic Meridional Overturning Circulation , 2014 .

[63]  A. Ducharne,et al.  Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin , 2014 .

[64]  J. Bras,et al.  Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes , 2014 .

[65]  Bainian Sun,et al.  Paleo-CO2 variation trends and the Cretaceous greenhouse climate , 2014 .

[66]  V. Menezes,et al.  Bidecadal sea level modes in the North and South Atlantic Oceans , 2013 .

[67]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[68]  Liping Zhang,et al.  Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations , 2013 .

[69]  D. Roche δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 1: Implementation and verification , 2013 .

[70]  Elizabeth A. Barnes,et al.  Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models , 2013 .

[71]  E. Guilyardi,et al.  ENSO representation in climate models: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[72]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[73]  B. Weare El Niño teleconnections in CMIP5 models , 2013, Climate Dynamics.

[74]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[75]  E. Guilyardi,et al.  Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model—part I: comparing IPSL_CM5A to IPSL_CM4 , 2013, Climate Dynamics.

[76]  E. Guilyardi,et al.  Initialisation and predictability of the AMOC over the last 50 years in a climate model , 2013, Climate Dynamics.

[77]  Marie-Alice Foujols,et al.  Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model , 2013, Climate Dynamics.

[78]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[79]  J. Mignot,et al.  A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM , 2013, Climate Dynamics.

[80]  J. Giardino,et al.  Ocean Cooling Pattern at the Last Glacial Maximum , 2012 .

[81]  S. Valcke,et al.  The OASIS3 coupler: a European climate modelling community software , 2012 .

[82]  P. Valdes,et al.  Deglacial rapid sea level rises caused by ice-sheet saddle collapses , 2012, Nature.

[83]  G. Danabasoglu,et al.  The Low-Resolution CCSM4 , 2012 .

[84]  P. Barrett,et al.  Antarctic topography at the Eocene–Oligocene boundary , 2012 .

[85]  J. Jungclaus,et al.  Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice , 2011 .

[86]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[87]  M. Dubey,et al.  Ice‐core data evidence for a prominent near 20 year time‐scale of the Atlantic Multidecadal Oscillation , 2011 .

[88]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[89]  Benoît Tartinville,et al.  Description of the Earth system model of intermediate complexity LOVECLIM version 1.2 , 2010 .

[90]  Sandrine Bony,et al.  Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records , 2010 .

[91]  Nathalie de Noblet-Ducoudré,et al.  Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes , 2010 .

[92]  Paul J. Valdes,et al.  High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr , 2010 .

[93]  F. He Simulating Transient Climate Evolution of the Last deglaciation with CCSM3 , 2010 .

[94]  Clara Deser,et al.  Sea surface temperature variability: patterns and mechanisms. , 2010, Annual review of marine science.

[95]  Pierre Friedlingstein,et al.  Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution , 2010 .

[96]  J. Sprintall,et al.  Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006 , 2009 .

[97]  A. Lynch,et al.  Variability of the Indian Ocean Dipole in coupled model paleoclimate simulations , 2009 .

[98]  K. Trenberth,et al.  Earth's Global Energy Budget , 2009 .

[99]  Henk Brinkhuis,et al.  Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .

[100]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[101]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[102]  G. Madec,et al.  Geothermal heating, diapycnal mixing and the abyssal circulation , 2008 .

[103]  S. Østerhus,et al.  Observed and modelled stability of overflow across the Greenland–Scotland ridge , 2008, Nature.

[104]  F. Lott,et al.  The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999 , 2008 .

[105]  P. Yiou,et al.  Decadal variability of sea surface temperatures off North Iceland over the last 2000 years , 2008 .

[106]  J. Qian,et al.  Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent , 2008 .

[107]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[108]  Henk A. Dijkstra,et al.  Climate model boundary conditions for four Cretaceous time slices , 2007 .

[109]  C. Jeandel,et al.  Modeling the neodymium isotopic composition with a global ocean circulation model , 2007 .

[110]  Andrey G. Kostianoy,et al.  Sea Surface Temperature Variability , 2007 .

[111]  R. Pierrehumbert,et al.  Modelling the primary control of paleogeography on Cretaceous climate , 2006 .

[112]  James J. Hack,et al.  The Low-Resolution CCSM3 , 2006 .

[113]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[114]  L. Wang,et al.  An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling , 2006, Int. J. Geogr. Inf. Sci..

[115]  Dmitry Divine,et al.  Historical variability of sea ice edge position in the Nordic Seas , 2006 .

[116]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[117]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[118]  Thomas J. Weingartner,et al.  Monthly temperature, salinity, and transport variability of the Bering Strait through flow , 2005 .

[119]  Valérie Dulière,et al.  On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model , 2005 .

[120]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[121]  Gerrit Lohmann,et al.  Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene , 2004 .

[122]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[123]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[124]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[125]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[126]  Molly O. Baringer,et al.  Sixteen years of Florida Current Transport at 27° N , 2001 .

[127]  Robert Jacob,et al.  Impact of ocean dynamics on the simulation of the neoproterozoic “snowball Earth” , 2001 .

[128]  D. Seidov,et al.  Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models [Palaeogeogr. Palaeoclimatol. Palaeoecol. 161 (2000) 295–310] , 2001 .

[129]  D. Seidov,et al.  Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models , 2000 .

[130]  Jan Polcher,et al.  Modelling root water uptake in a complex land surface scheme coupled to a GCM , 1998 .

[131]  A. Ducharne,et al.  Sensitivity of the hydrological cycle to the parametrization of soil hydrology in a GCM , 1998 .

[132]  O. Marti,et al.  Adjustment and feedbacks in a global coupled ocean-atmosphere model , 1997 .

[133]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[134]  B. Otto‐Bliesner,et al.  Vegetation-induced warming of high-latitude regions during the Late Cretaceous period , 1997, Nature.

[135]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[136]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[137]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[138]  S. Jourdain,et al.  Climatological evaluation of some fluxes of the surface energy and soil water balances over France , 1995 .

[139]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[140]  A. Perrier,et al.  SECHIBA : a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model , 1993 .

[141]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[142]  Ann Henderson-Sellers,et al.  The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization , 1985 .

[143]  Hilding Sundqvist,et al.  A parameterization scheme for non-convective condensation including prediction of cloud water content , 1978 .

[144]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .