Vascular density in human melanoma xenografts: relationship to angiogenesis, perfusion and necrosis.

[1]  T. Danielsen,et al.  VEGF, bFGF and EGF in the angiogenesis of human melanoma xenografts , 1998, International journal of cancer.

[2]  D. Ruiter,et al.  Analysis of the tumor vasculature and metastatic behavior of xenografts of human melanoma cell lines transfected with vascular permeability factor. , 1996, The American journal of pathology.

[3]  N. Weidner Intratumor microvessel density as a prognostic factor in cancer. , 1995, The American journal of pathology.

[4]  S. Hill,et al.  Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. , 1995, British Journal of Cancer.

[5]  E. Rofstad,et al.  Orthotopic human melanoma xenograft model systems for studies of tumour angiogenesis, pathophysiology, treatment sensitivity and metastatic pattern. , 1994, British Journal of Cancer.

[6]  H. Lyng,et al.  Blood flow in six human melanoma xenograft lines with different growth characteristics. , 1992, Cancer research.

[7]  L. Milas,et al.  An intradermal assay for quantification and kinetics studies of tumor angiogenesis in mice. , 1991, Radiation research.

[8]  P. Okunieff,et al.  Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. , 1989, Cancer research.

[9]  P Vaupel,et al.  Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo data: role of various mechanisms in the development of tumor hypoxia. , 1988, International journal of radiation oncology, biology, physics.

[10]  W. Ershler,et al.  Investigation of tumor angiogenesis in an id mouse model: role of host-tumor interactions. , 1988, Journal of the National Cancer Institute.

[11]  R. Sutherland,et al.  Mathematical modelling of oxygen supply and oxygenation in tumor tissues: prognostic, therapeutic, and experimental implications. , 1988, International journal of radiation oncology, biology, physics.

[12]  L. Révész,et al.  Vascular density in carcinoma of the uterine cervix and its predictive value for radiotherapy , 1988, International journal of cancer.

[13]  R K Jain,et al.  Determinants of tumor blood flow: a review. , 1988, Cancer research.

[14]  D. Chaplin,et al.  Intermittent blood flow in a murine tumor: radiobiological effects. , 1987, Cancer research.

[15]  E. Rofstad,et al.  Vascular structure of five human malignant melanomas grown in athymic nude mice. , 1982, British Journal of Cancer.

[16]  L. Sapirstein,et al.  Regional blood flow by fractional distribution of indicators. , 1958, The American journal of physiology.

[17]  E. Manseau,et al.  Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. , 1996, Cancer research.

[18]  D. Ruiter,et al.  Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. , 1995, The American journal of pathology.

[19]  R. Jain,et al.  Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. , 1991, Cancer research.

[20]  C. Streffer,et al.  Vascularization, proliferation and necrosis in untreated human primary tumours and untreated human xenografts. , 1991, International journal of radiation biology.

[21]  L. Révész,et al.  Vascularization and radiocurability in cancer of the uterine cervix. A retrospective study. , 1982, Neoplasma.