Virulence determinants of pandemic influenza viruses.

Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics.

[1]  H. Klenk,et al.  Understanding influenza virus pathogenicity. , 1999, Trends in microbiology.

[2]  David E. Swayne,et al.  Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus , 2006, Nature.

[3]  Lucy A. Perrone,et al.  A Single Mutation in the PB1-F2 of H5N1 (HK/97) and 1918 Influenza A Viruses Contributes to Increased Virulence , 2007, PLoS pathogens.

[4]  D. Barnard,et al.  Animal models for the study of influenza pathogenesis and therapy , 2009, Antiviral Research.

[5]  A. Coates,et al.  Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model , 2009, The Journal of infectious diseases.

[6]  R. Webster,et al.  Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Guohua Deng,et al.  A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogenicity of H5N1 Avian Influenza Viruses in Mice , 2007, Journal of Virology.

[8]  R. Lamb,et al.  A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity , 2008, Proceedings of the National Academy of Sciences.

[9]  Chak Sangma,et al.  An Avian Influenza H5N1 Virus That Binds to a Human-Type Receptor , 2007, Journal of Virology.

[10]  M. Zambon,et al.  Emergence of influenza A H1N2 reassortant viruses in the human population during 2001. , 2002, Virology.

[11]  David J. Stevens,et al.  Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors , 2006, Nature.

[12]  R. Webster,et al.  Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. , 1994, Virology.

[13]  G. Jackson,et al.  Evidence for a heritable predisposition to death due to influenza. , 2008, The Journal of infectious diseases.

[14]  A. García-Sastre,et al.  PB1-F2 Expression by the 2009 Pandemic H1N1 Influenza Virus Has Minimal Impact on Virulence in Animal Models , 2010, Journal of Virology.

[15]  H. Klenk,et al.  Functional balance between haemagglutinin and neuraminidase in influenza virus infections , 2002, Reviews in medical virology.

[16]  C. Viboud,et al.  Explorer The genomic and epidemiological dynamics of human influenza A virus , 2016 .

[17]  James E. Crowe,et al.  Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus , 2010, Science.

[18]  A. Moscona,et al.  Oseltamivir resistance--disabling our influenza defenses. , 2005, The New England journal of medicine.

[19]  Timothy M. Uyeki,et al.  Detecting Human-to-Human Transmission of Avian Influenza A (H5N1) , 2007, Emerging infectious diseases.

[20]  Niall Johnson,et al.  Updating the Accounts: Global Mortality of the 1918-1920 "Spanish" Influenza Pandemic , 2002, Bulletin of the history of medicine.

[21]  Rong Wang,et al.  Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1 , 2005, PLoS pathogens.

[22]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[23]  Tokiko Watanabe,et al.  Generation of influenza A viruses entirely from cloned cDNAs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. D. Kilbourne Influenza Pandemics of the 20th Century , 2006, Emerging infectious diseases.

[25]  R. Webster,et al.  Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus , 1998, The Lancet.

[26]  R. Zell,et al.  Prevalence of PB1-F2 of influenza A viruses. , 2007, The Journal of general virology.

[27]  R. Krug,et al.  The H5N1 Influenza Virus NS Genes Selected after 1998 Enhance Virus Replication in Mammalian Cells , 2007, Journal of Virology.

[28]  John Steel,et al.  Transmission of Influenza Virus in a Mammalian Host Is Increased by PB2 Amino Acids 627K or 627E/701N , 2009, PLoS pathogens.

[29]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[30]  Yan Li,et al.  Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus , 2007, Nature.

[31]  A. García-Sastre,et al.  Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines , 2010, PLoS pathogens.

[32]  Kelli L Boyd,et al.  Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. , 2007, Cell host & microbe.

[33]  Katsuhisa Nakajima,et al.  Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950 , 1978, Nature.

[34]  Yoshihiro Kawaoka,et al.  Pandemic Threat Posed by Avian Influenza A Viruses , 2001, Clinical Microbiology Reviews.

[35]  Wang Guansong,et al.  Update on avian influenza A (H5N1) virus infection in humans , 2009 .

[36]  P. Scheiffele,et al.  Influenza Viruses Select Ordered Lipid Domains during Budding from the Plasma Membrane* , 1999, The Journal of Biological Chemistry.

[37]  Anthony S Fauci,et al.  Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. , 2008, The Journal of infectious diseases.

[38]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[39]  Ian A. Wilson,et al.  A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity , 2005, Journal of Virology.

[40]  Yoshihiro Kawaoka,et al.  Molecular Basis for the Generation in Pigs of Influenza A Viruses with Pandemic Potential , 1998, Journal of Virology.

[41]  D. Steinhauer,et al.  Role of hemagglutinin cleavage for the pathogenicity of influenza virus. , 1999, Virology.

[42]  David E. Swayne,et al.  A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission , 2007, Science.

[43]  Jonathan W. Yewdell,et al.  A novel influenza A virus mitochondrial protein that induces cell death , 2001, Nature Medicine.

[44]  Ron A M Fouchier,et al.  Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans , 2009, Science.

[45]  A. García-Sastre,et al.  Inefficient Control of Host Gene Expression by the 2009 Pandemic H1N1 Influenza A Virus NS1 Protein , 2010, Journal of Virology.

[46]  Gavin J. D. Smith,et al.  Emergence and predominance of an H5N1 influenza variant in China , 2006, Proceedings of the National Academy of Sciences.

[47]  J. Oxford,et al.  Animal models in influenza vaccine testing , 2008, Expert review of vaccines.

[48]  Julie L. McAuley,et al.  PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology , 2010, PLoS pathogens.

[49]  K. Gustafson,et al.  Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. , 2008, Antiviral research.

[50]  J. Taubenberger,et al.  1918 Influenza: the Mother of All Pandemics , 2006, Emerging infectious diseases.

[51]  Prasert Auewarakul,et al.  Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. , 2005, The Journal of general virology.

[52]  A. García-Sastre,et al.  Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. , 2001, Virology.

[53]  Y. Guan,et al.  Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? , 2002, The Lancet.

[54]  David E. Swayne,et al.  Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus , 2005, Science.

[55]  L. Finelli,et al.  Emergence of a novel swine-origin influenza A (H1N1) virus in humans. , 2009, The New England journal of medicine.

[56]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[57]  M. Newton,et al.  Drosophila RNAi screen identifies host genes important for influenza virus replication , 2008, Nature.

[58]  A. Klimov,et al.  Evolution of the receptor binding phenotype of influenza A (H5) viruses. , 2006, Virology.

[59]  D. Levy,et al.  Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. , 1998, Virology.

[60]  David E. Swayne,et al.  Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Oxford,et al.  The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. , 2002, Antiviral research.

[62]  David Baltimore,et al.  Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance , 2010, Science.

[63]  Yi Guan,et al.  Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia , 2006, Nature Medicine.

[64]  M. Okamatsu,et al.  Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice. , 2006, The Journal of general virology.

[65]  John Steel,et al.  Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature , 2007, PLoS pathogens.

[66]  Thijs Kuiken,et al.  H5N1 Virus Attachment to Lower Respiratory Tract , 2006, Science.

[67]  R. Webster,et al.  Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics , 1989, Journal of virology.

[68]  P. Massin,et al.  Residue 627 of PB2 Is a Determinant of Cold Sensitivity in RNA Replication of Avian Influenza Viruses , 2001, Journal of Virology.

[69]  N. Khardori,et al.  Triple-Reassortant Swine Influenza A (H1) in Humans in the United States, 2005–2009 , 2009 .

[70]  Stephan Ludwig,et al.  The proapoptotic influenza A virus protein PB1‐F2 regulates viral polymerase activity by interaction with the PB1 protein , 2008, Cellular microbiology.

[71]  R. Lamb,et al.  Orthomyxoviridae: The Viruses and Their Replication. , 1996 .

[72]  Glezen Wp Emerging Infections: Pandemic Influenza , 1996 .

[73]  Yoshihiro Kawaoka,et al.  Avian flu: Influenza virus receptors in the human airway , 2006, Nature.

[74]  Edward C. Holmes,et al.  Different Evolutionary Trajectories of European Avian-Like and Classical Swine H1N1 Influenza A Viruses , 2009, Journal of Virology.

[75]  Yoshihiro Kawaoka,et al.  Cellular networks involved in the influenza virus life cycle. , 2010, Cell host & microbe.

[76]  J. Paulson,et al.  The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. , 1991, Virology.

[77]  Yu Wang,et al.  Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China , 2008, The Lancet.

[78]  Chih-Jen Wei,et al.  Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design , 2010, Science Translational Medicine.

[79]  C. Naeve,et al.  Large-Scale Sequence Analysis of Avian Influenza Isolates , 2006, Science.

[80]  Jin Hyun Kim,et al.  Growth of H5N1 Influenza A Viruses in the Upper Respiratory Tracts of Mice , 2007, PLoS pathogens.

[81]  Hideo Goto,et al.  In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses , 2009, Nature.

[82]  Yoshihiro Kawaoka,et al.  Molecular Basis for High Virulence of Hong Kong H5N1 Influenza A Viruses , 2001, Science.

[83]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[84]  P. Palese,et al.  Influenza A Virus PB1-F2 Protein Contributes to Viral Pathogenesis in Mice , 2006, Journal of Virology.

[85]  David J. Adams,et al.  The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus , 2009, Cell.

[86]  J. Taubenberger,et al.  Influenza : the Mother of All Pandemics , 2022 .

[87]  A. García-Sastre,et al.  Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air , 2009, Proceedings of the National Academy of Sciences.

[88]  R. Webster,et al.  Lethal H5N1 influenza viruses escape host anti-viral cytokine responses , 2002, Nature Medicine.

[89]  H. Klenk,et al.  Interaction of Polymerase Subunit PB2 and NP with Importin α1 Is a Determinant of Host Range of Influenza A Virus , 2008, PLoS pathogens.

[90]  J. Taubenberger,et al.  Pandemic influenza--including a risk assessment of H5N1. , 2009, Revue scientifique et technique.

[91]  C. Scholtissek,et al.  On the origin of the human influenza virus subtypes H2N2 and H3N2. , 1978, Virology.

[92]  A. García-Sastre,et al.  Rescue of influenza A virus from recombinant DNA. , 2007, Journal of virology.

[93]  J. Doudna,et al.  Adaptive strategies of the influenza virus polymerase for replication in humans , 2009, Proceedings of the National Academy of Sciences.

[94]  J. Doudna,et al.  An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. , 2008, Cell host & microbe.

[95]  A. García-Sastre,et al.  Blocking Interhost Transmission of Influenza Virus by Vaccination in the Guinea Pig Model , 2009, Journal of Virology.

[96]  R. Sung,et al.  Pathology of fatal human infection associated with avian influenza A H5N1 virus , 2001, Journal of medical virology.

[97]  C. Sweet,et al.  Lessons for human influenza from pathogenicity studies with ferrets. , 1988, Reviews of infectious diseases.

[98]  Penny A. Rudd,et al.  Severe seasonal influenza in ferrets correlates with reduced interferon and increased IL-6 induction. , 2008, Virology.

[99]  B. G. Hale,et al.  The multifunctional NS1 protein of influenza A viruses. , 2008, The Journal of general virology.

[100]  A. Tomoiu,et al.  Avian Influenza A Virus Polymerase Association with Nucleoprotein, but Not Polymerase Assembly, Is Impaired in Human Cells during the Course of Infection , 2008, Journal of Virology.

[101]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[102]  Glezen Wp,et al.  Emerging infections: pandemic influenza. , 1996, Epidemiologic reviews.

[103]  Jeffery K. Taubenberger,et al.  Initial Genetic Characterization of the 1918 “Spanish” Influenza Virus , 1997, Science.

[104]  R. König,et al.  Human Host Factors Required for Influenza Virus Replication , 2010, Nature.

[105]  Chih-Jen Wei,et al.  Immunization by Avian H5 Influenza Hemagglutinin Mutants with Altered Receptor Binding Specificity , 2007, Science.

[106]  Marion Koopmans,et al.  Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets , 2009, Science.

[107]  Rahul Raman,et al.  Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice , 2009, Science.

[108]  John Steel,et al.  High Temperature (30°C) Blocks Aerosol but Not Contact Transmission of Influenza Virus , 2008, Journal of Virology.

[109]  N. Cox,et al.  Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. , 1998, Science.

[110]  R. Albrecht,et al.  Experimental Infection of Pigs with the Human 1918 Pandemic Influenza Virus , 2009, Journal of Virology.

[111]  J. Peiris,et al.  Re-emergence of fatal human influenza A subtype H5N1 disease , 2004, The Lancet.

[112]  M. Katze,et al.  Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics , 2006, Journal of Virology.

[113]  D. Smee,et al.  In vitro and in vivo assay systems for study of influenza virus inhibitors. , 2000, Antiviral research.

[114]  D. Pérez,et al.  Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection , 2009, PLoS currents.

[115]  M. Mura,et al.  Evidence for Avian and Human Host Cell Factors That Affect the Activity of Influenza Virus Polymerase , 2010, Journal of Virology.