White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance

[1]  Klaus P. Ebmeier,et al.  Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets , 2020, NeuroImage.

[2]  Francesco Sardanelli,et al.  Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach , 2020, European Radiology Experimental.

[3]  Klaus P. Ebmeier,et al.  Association of midlife stroke risk with structural brain integrity and memory performance at older ages: a longitudinal cohort study , 2020, Brain communications.

[4]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[5]  T. Kahraman,et al.  Black Holes in Relation to Cognitive and Physical Functions in Persons with Multiple Sclerosis , 2019 .

[6]  L. Beckett,et al.  White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities , 2019, Alzheimer's & dementia.

[7]  B. Cheng,et al.  Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies , 2019, Front. Neurol..

[8]  Richard Frayne,et al.  Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration , 2019, Alzheimer's & dementia.

[9]  M. Pawlak,et al.  Spatial distribution of white matter degenerative lesions and cognitive dysfunction in relapsing-remitting multiple sclerosis patients. , 2018, Neurologia i neurochirurgia polska.

[10]  B. Mädler,et al.  Multicenter Measurements of T1 Relaxation and Diffusion Tensor Imaging: Intra and Intersite Reproducibility , 2018, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[11]  Ludovica Griffanti,et al.  Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults , 2017, NeuroImage.

[12]  Ludovica Griffanti,et al.  BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities , 2016, NeuroImage.

[13]  Carole Dufouil,et al.  Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  H. Feldman,et al.  Periventricular hyperintensities are associated with elevated cerebral amyloid , 2016, Neurology.

[15]  Soo Jin Yoon,et al.  Periventricular white matter hyperintensities and the risk of dementia: a CREDOS study , 2015, International Psychogeriatrics.

[16]  Joanna M Wardlaw,et al.  What are White Matter Hyperintensities Made of? , 2015, Journal of the American Heart Association.

[17]  Klaus P. Ebmeier,et al.  Study protocol: the Whitehall II imaging sub-study , 2014, BMC Psychiatry.

[18]  N. Bargalló,et al.  Tract-Specific Fractional Anisotropy Predicts Cognitive Outcome in a Community Sample of Middle-Aged Participants with White Matter Lesions , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Nick C Fox,et al.  Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , 2013, The Lancet Neurology.

[20]  M. Weiner,et al.  Cortical thinning related to periventricular and deep white matter hyperintensities , 2012, Neurobiology of Aging.

[21]  Roger Tam,et al.  The association between cognitive function and white matter lesion location in older adults: a systematic review , 2012, Alzheimer's & Dementia.

[22]  P. Scheltens,et al.  2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease? , 2011, Cerebrovascular Diseases.

[23]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[24]  Matthew L Senjem,et al.  Functional impact of white matter hyperintensities in cognitively normal elderly subjects. , 2010, Archives of neurology.

[25]  H. Markus,et al.  The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis , 2010, BMJ : British Medical Journal.

[26]  K. Trinkaus,et al.  Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole , 2010, Neurology.

[27]  S. Studenski,et al.  Age-associated leukoaraiosis and cortical cholinergic deafferentation , 2009, Neurology.

[28]  F. Barkhof,et al.  Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia , 2008, Journal of Neurology.

[29]  D. Tate,et al.  Regional White Matter Signal Abnormalities and Cognitive Correlates Among Geriatric Patients with Treated Cardiovascular Disease , 2008, Brain Imaging and Behavior.

[30]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[31]  M. van Buchem,et al.  Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. , 2006, AJNR. American journal of neuroradiology.

[32]  G J Blauw,et al.  Measuring longitudinal white matter changes: comparison of a visual rating scale with a volumetric measurement. , 2006, AJNR. American journal of neuroradiology.

[33]  Michael Marmot,et al.  Cohort Profile: the Whitehall II study. , 2005, International journal of epidemiology.

[34]  D. Harvey,et al.  Anatomical Mapping of White Matter Hyperintensities (WMH): Exploring the Relationships Between Periventricular WMH, Deep WMH, and Total WMH Burden , 2005, Stroke.

[35]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[36]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[37]  A. Hofman,et al.  Periventricular cerebral white matter lesions predict rate of cognitive decline , 2002, Annals of neurology.

[38]  C. Lucchinetti,et al.  A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions , 2001, Annals of neurology.

[39]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[40]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[41]  C. Filley,et al.  The behavioral neurology of cerebral white matter , 1998, Neurology.

[42]  F. Barkhof,et al.  Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis , 1998, Neurology.

[43]  M. A. Bell,et al.  Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. , 1990, AJNR. American journal of neuroradiology.