UAV tracking based on saliency detection

This paper presents a novel unmanned aerial vehicle tracking framework. First, hierarchical convolutional neural network features are used to track the object independently in a correlation filter tracking framework. Second, a stability criterion is proposed, which is based on the variance of tracking results of each layer. Next, tracking result is adaptively fused via the variance. Meanwhile, the criterion can be used to measure the quality of tracking results. A saliency detection method is utilized to generate candidate regions when tracking failure occurs. By virtue of this method, our tracking algorithm can robustly cope with appearance changes and prevent drifting issues. Experimental results show that our proposed tracking algorithm performs favorably against state-of-the-art methods on two benchmark datasets.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  José de Jesús Rubio,et al.  Discrete time control based in neural networks for pendulums , 2017, Appl. Soft Comput..

[6]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[7]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[9]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[11]  Peyman Milanfar,et al.  Visual saliency for automatic target detection, boundary detection, and image quality assessment , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Pascual Campoy Cervera,et al.  Vision based GPS-denied Object Tracking and following for unmanned aerial vehicles , 2013, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[16]  Karl A. Stol,et al.  On-board object tracking control of a quadcopter with monocular vision , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[17]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Jacobo Sandoval-Gutierrez,et al.  Robust Switched Tracking Control for Wheeled Mobile Robots Considering the Actuators and Drivers , 2018, Sensors.

[19]  Helmut Grabner,et al.  Aerial object tracking from an airborne platform , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[20]  Jeremiah Neubert,et al.  On-Board Visual Tracking with Unmanned Aircraft System (UAS) , 2011, ArXiv.

[21]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[22]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[23]  Peyman Milanfar,et al.  Face Verification Using the LARK Representation , 2011, IEEE Transactions on Information Forensics and Security.

[24]  Sudipta N. Sinha,et al.  Monocular Localization of a moving person onboard a Quadrotor MAV , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Yaonan Wang,et al.  Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators , 2019, Neural Computing and Applications.

[26]  Miguel A. Olivares-Méndez,et al.  Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Wei He,et al.  Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[32]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[36]  Hanqing Lu,et al.  MC-HOG Correlation Tracking with Saliency Proposal , 2016, AAAI.

[37]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[38]  Edmond Boyer,et al.  Exact polyhedral visual hulls , 2003, BMVC.

[39]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[40]  Jose de Jesus Rubio,et al.  Modified optimal control with a backpropagation network for robotic arms , 2012 .

[41]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Dit-Yan Yeung,et al.  Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models , 2017, AAAI.

[43]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[45]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[46]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Yong Wang,et al.  Visual tracking based on group sparsity learning , 2014, Machine Vision and Applications.

[48]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[49]  José de Jesús Rubio,et al.  Learning of operator hand movements via least angle regression to be teached in a manipulator , 2020, Evol. Syst..

[50]  Cordelia Schmid,et al.  Occlusion and Motion Reasoning for Long-Term Tracking , 2014, ECCV.

[51]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[52]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Bernard Ghanem,et al.  Persistent Aerial Tracking system for UAVs , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[54]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[55]  Yong Wang,et al.  Hard negative mining for correlation filters in visual tracking , 2019, Machine Vision and Applications.

[56]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[58]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[59]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[60]  Yong Wang,et al.  Online Model Adaptation for UAV Tracking with Convolutional Neural Network , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[61]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.