Digital Modeling and Digital Redesign of Analog Uncertain Systems Using Genetic Algorithms

Genetic algorithms (GAs) are utilized to e nd the equivalent discrete-time uncertain model of a continuoustime uncertain system for digital simulation and digital design of the continuous-time uncertain system. The developed digitalinterval model providesless conservativeresults than thoseobtained by the conventionalbilinear transform method. Also, the global optimization searching technique provided in the GAs is used to determine the digital control law, taking into account the intersample behavior and implementation errors, for digital control of continuous-time parametric uncertain systems. The developed digitally redesigned control law is able to optimally match the states of the analogously controlled uncertain system and those of the digitally controlled sampleddata uncertain system. Moreover, it produces less conservative results than those obtained by the existing interval method. An illustrative example is included to demonstrate the proposed method.

[1]  L. S. Shieh,et al.  A new approach to the digital redesign of continuous-time controllers , 1992 .

[2]  Frank L. Lewis,et al.  Applied Optimal Control and Estimation: Digital Design and Implementation , 2008 .

[3]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[4]  E. P. Oppenheimer Application of interval analysis techniques to linear systems. II. The interval matrix exponential function , 1988 .

[5]  Tongwen Chen,et al.  Introduction to Discrete-Time H∞-Optimal Control , 1995 .

[6]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[7]  Dennis S. Bernstein,et al.  Benchmark Problems for Robust Control Design , 1991, 1991 American Control Conference.

[8]  A. Deif Sensitivity analysis in linear systems , 1986 .

[9]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[10]  Jelel Ezzine Robust stability bounds for sampled-data systems , 1995 .

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  Stuart C. Kramer,et al.  Direct optimization of gain scheduled controllers via genetic algorithms , 1996 .

[13]  M. Mansour Robust stability of interval matrices , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[14]  B. Noble Applied Linear Algebra , 1969 .

[15]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .

[16]  Benjamin C. Kuo,et al.  Digital Control Systems , 1977 .

[17]  K. Narendra,et al.  Identification and Optimization of Aircraft Dynamics , 1973 .

[18]  Xiang Zou,et al.  Digital interval model conversion and simulation of continuous-time uncertain systems , 1995 .

[19]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[20]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[21]  Jason Sheng-Hong Tsai,et al.  Digital modelling and digital redesign of sampled-data uncertain systems , 1995 .

[22]  B.D.O. Anderson,et al.  Controller design: moving from theory to practice , 1993, IEEE Control Systems.

[23]  Lubomir V. Kolev,et al.  Interval Methods for Circuit Analysis , 1993, Advanced Series in Circuits and Systems.

[24]  Sergey P. Shary,et al.  On optimal solution of interval linear equations , 1995 .

[25]  Leang S. Shieh,et al.  Model conversions of uncertain linear systems using the Pade and inverse-Pade method , 1993 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  W. Zuo,et al.  Multivariable adaptive control for a space station using genetic algorithms , 1995 .

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  Frank L. Lewis,et al.  Applied Optimal Control and Estimation , 1992 .

[30]  Bor-Sen Chen,et al.  A genetic approach to mixed H/sub 2//H/sub /spl infin// optimal PID control , 1995 .

[31]  Guy Albert Dumont,et al.  System identification and control using genetic algorithms , 1992, IEEE Trans. Syst. Man Cybern..