Fast dictionary learning from incomplete data

This paper extends the recently proposed and theoretically justified iterative thresholding and K residual means (ITKrM) algorithm to learning dictionaries from incomplete/masked training data (ITKrMM). It further adapts the algorithm to the presence of a low-rank component in the data and provides a strategy for recovering this low-rank component again from incomplete data. Several synthetic experiments show the advantages of incorporating information about the corruption into the algorithm. Further experiments on image data confirm the importance of considering a low-rank component in the data and show that the algorithm compares favourably to its closest dictionary learning counterparts, wKSVD and BPFA, either in terms of computational complexity or in terms of consistency between the dictionaries learned from corrupted and uncorrupted data. To further confirm the appropriateness of the learned dictionaries, we explore an application to sparsity-based image inpainting. There the ITKrMM dictionaries show a similar performance to other learned dictionaries like wKSVD and BPFA and a superior performance to other algorithms based on pre-defined/analytic dictionaries.

[1]  Sanjeev Arora,et al.  New Algorithms for Learning Incoherent and Overcomplete Dictionaries , 2013, COLT.

[2]  John Wright,et al.  Complete dictionary recovery over the sphere , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[3]  Karin Schnass,et al.  On the Identifiability of Overcomplete Dictionaries via the Minimisation Principle Underlying K-SVD , 2013, ArXiv.

[4]  S. Mallat,et al.  Adaptive time-frequency decomposition with matching pursuits , 1992, [1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis.

[5]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[6]  Luigi del Re,et al.  Prediction Methods for Blood Glucose Concentration: Design, Use and Evaluation , 2016 .

[7]  Rémi Gribonval,et al.  Sparse and Spurious: Dictionary Learning With Noise and Outliers , 2014, IEEE Transactions on Information Theory.

[8]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[9]  Michael Schoemaker,et al.  CGM—How Good Is Good Enough? , 2016 .

[10]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[11]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[13]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[14]  Karin Schnass,et al.  A Personal Introduction to Theoretical Dictionary Learning , 2015 .

[15]  Karin Schnass,et al.  Convergence radius and sample complexity of ITKM algorithms for dictionary learning , 2015, Applied and Computational Harmonic Analysis.

[16]  David Steurer,et al.  Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method , 2014, STOC.

[17]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[18]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[19]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[20]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[21]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[23]  B. Garilli,et al.  He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6? , 2012, 1212.5270.

[24]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[25]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[26]  Mohamed-Jalal Fadili,et al.  Astronomical Image Denoising Using Dictionary Learning , 2013, ArXiv.

[27]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[28]  Karin Schnass,et al.  Dictionary Identification—Sparse Matrix-Factorization via $\ell_1$ -Minimization , 2009, IEEE Transactions on Information Theory.

[29]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[30]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[32]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions , 1994 .

[33]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[34]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[35]  Christine Guillemot,et al.  Image Inpainting : Overview and Recent Advances , 2014, IEEE Signal Processing Magazine.

[36]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[37]  Valeriya Naumova and Sergei V. Pereverzyev Blood Glucose Predictors: an Overview on How Recent Developments Help to Unlock the Problem of Glucose Regulation , 2012 .

[38]  藤元政考,et al.  Robust Principle Component Analysisを用いたノイズ除去とコントラスト強調による歯科用内視鏡取得画像の視認性向上 , 2018 .

[39]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[40]  Prateek Jain,et al.  Learning Sparsely Used Overcomplete Dictionaries , 2014, COLT.

[41]  Karin Schnass,et al.  Local identification of overcomplete dictionaries , 2014, J. Mach. Learn. Res..

[42]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[43]  Prateek Jain,et al.  Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization , 2013, SIAM J. Optim..

[44]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[45]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[46]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[47]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[48]  Sanjeev Arora,et al.  Simple, Efficient, and Neural Algorithms for Sparse Coding , 2015, COLT.