The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics

We present an extension of the piecewise parabolic method to special relativistic fluid dynamics in multidimensions. The scheme is conservative, dimensionally unsplit, and suitable for a general equation of state. Temporal evolution is second-order accurate and employs characteristic projection operators; spatial interpolation is piecewise parabolic making the scheme third-order accurate in smooth regions of the flow away from discontinuities. The algorithm is written for a general system of orthogonal curvilinear coordinates and can be used for computations in non-Cartesian geometries. A nonlinear iterative Riemann solver based on the two-shock approximation is used in flux calculation. In this approximation, an initial discontinuity decays into a set of discontinuous waves only implying that, in particular, rarefaction waves are treated as flow discontinuities. We also present a new and simple equation of state that approximates the exact result for the relativistic perfect gas with high accuracy. The strength of the new method is demonstrated in a series of numerical tests and more complex simulations in one, two, and three dimensions.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[3]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[4]  I. Sokolov,et al.  Simple and efficient Godunov scheme for computational relativistic gas dynamics , 2001 .

[5]  Under consideration for publication in J. Fluid Mech. 1 An Improved Exact Riemann Solver for Multidimensional Relativistic Flows , 2008 .

[6]  S. Bogovalov,et al.  Interaction of pulsar winds with interstellar medium: numerical simulation , 2005 .

[7]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[8]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[9]  V. G. Weirs,et al.  On Validating an Astrophysical Simulation Code , 2002, astro-ph/0206251.

[10]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[11]  C. Goebel The Relativistic Gas. , 1958 .

[12]  P. Colella,et al.  A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing , 2002 .

[13]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[14]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[15]  J. Blondin,et al.  The piecewise-parabolic method in curvilinear coordinates , 1993 .

[16]  E. Amato,et al.  Axially symmetric relativistic MHD simulations of Pulsar Wind Nebulae in Supernova Remnants. On the origin of torus and jet-like features , 2004, astro-ph/0404355.

[17]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .

[18]  GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF COLLAPSARS: ROTATING BLACK HOLE CASES , 2003, astro-ph/0310017.

[19]  Phillip Colella,et al.  A high-order Eulerian Godunov method for elastic-plastic flow in solids , 2001 .

[20]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .

[21]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[22]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[23]  WENLONG DAI,et al.  An Iterative Riemann Solver for Relativistic Hydrodynamics , 1997, SIAM J. Sci. Comput..

[24]  Ewald Müller,et al.  Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics , 1996 .

[25]  S. A. E. G. Falle,et al.  An upwind numerical scheme for relativistic hydrodynamics with a general equation of state , 1996 .

[26]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[27]  S. R. Kulkarni,et al.  BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR , 2001 .

[28]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[29]  D. Meier,et al.  Magnetohydrodynamic production of relativistic jets. , 2001, Science.

[30]  Dinshaw S. Balsara,et al.  Riemann Solver for Relativistic Hydrodynamics , 1994 .

[31]  Antonio Marquina,et al.  Morphology and Dynamics of Relativistic Jets , 1997 .

[32]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[33]  A. MacFadyen,et al.  Central engines for gamma-ray bursts , 1999 .

[34]  Angelo Marcello Anile,et al.  Relativistic fluids and magneto-fluids , 2005 .

[35]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[36]  A. H. Taub,et al.  Relativistic Rankine-Hugoniot Equations , 1948 .

[37]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[38]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[39]  The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.

[40]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[41]  P. Huovinen,et al.  Dissipation and elliptic flow at relativistic energies. , 2005, Physical review letters.