The Wild Bootstrap Resampling in Regression Imputation Algorithm with a Gaussian Mixture Model
暂无分享,去创建一个
[1] J. Shao,et al. Jackknife variance estimation with survey data under hot deck imputation , 1992 .
[2] Muni S. Srivastava,et al. Multiple imputation and other resampling schemes for imputing missing observations , 2009, J. Multivar. Anal..
[3] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[4] Changbao Wu,et al. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[5] Campbell R. Harvey. The Specification of Conditional Expectations , 1991 .
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] Spyros G. Zarkos,et al. Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing , 1999 .
[8] Regina Y. Liu. Bootstrap Procedures under some Non-I.I.D. Models , 1988 .
[9] Michael I. Jordan,et al. Supervised learning from incomplete data via an EM approach , 1993, NIPS.
[10] A. Bowman,et al. A look at some data on the old faithful geyser , 1990 .
[11] Marco Di Zio,et al. Imputation through finite Gaussian mixture models , 2007, Comput. Stat. Data Anal..
[12] E. Mammen,et al. Comparing Nonparametric Versus Parametric Regression Fits , 1993 .
[13] Amaury Lendasse,et al. Mixture of Gaussians for distance estimation with missing data , 2014, Neurocomputing.
[14] Gary King,et al. Amelia II: A Program for Missing Data , 2011 .
[15] Craig K. Enders,et al. Applied Missing Data Analysis , 2010 .
[16] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[17] M. Zadkarami. Bootstrapping: A Nonparametric Approach to Identify the Effect of Sparsity of Data in the Binary Regression Models , 2008 .