The Wild Bootstrap Resampling in Regression Imputation Algorithm with a Gaussian Mixture Model

Unsupervised learning of finite Gaussian mixture model (FGMM) is used to learn the distribution of population data. This paper proposes the use of the wild bootstrapping to create the variability of the imputed data in single missing data imputation. We compare the performance and accuracy of the proposed method in single imputation and multiple imputation from the R-package Amelia II using RMSE, R-squared, MAE and MAPE. The proposed method shows better performance when compared with the multiple imputation (MI) which is indeed known as the golden method of missing data imputation techniques.

[1]  J. Shao,et al.  Jackknife variance estimation with survey data under hot deck imputation , 1992 .

[2]  Muni S. Srivastava,et al.  Multiple imputation and other resampling schemes for imputing missing observations , 2009, J. Multivar. Anal..

[3]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[4]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[5]  Campbell R. Harvey The Specification of Conditional Expectations , 1991 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Spyros G. Zarkos,et al.  Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing , 1999 .

[8]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[9]  Michael I. Jordan,et al.  Supervised learning from incomplete data via an EM approach , 1993, NIPS.

[10]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[11]  Marco Di Zio,et al.  Imputation through finite Gaussian mixture models , 2007, Comput. Stat. Data Anal..

[12]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[13]  Amaury Lendasse,et al.  Mixture of Gaussians for distance estimation with missing data , 2014, Neurocomputing.

[14]  Gary King,et al.  Amelia II: A Program for Missing Data , 2011 .

[15]  Craig K. Enders,et al.  Applied Missing Data Analysis , 2010 .

[16]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[17]  M. Zadkarami Bootstrapping: A Nonparametric Approach to Identify the Effect of Sparsity of Data in the Binary Regression Models , 2008 .