In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement

Abstract Transport properties of natural silicate melts at super-liquidus temperatures are reasonably well understood. However, migration and transport of silicate melts in the Earth’s crust and at its surface generally occur at sub-liquidus temperatures and in settings where the melts undergo crystallization under various cooling and/or decompression conditions. In such dynamic situations the occurrence of processes such as the release of latent heat during phase changes, viscous heating, thermal advection and -inertia, and changing heat capacity, all represent potential influences on the state, and thereby on the physico-chemical behavior of the system. To date, rheological data at sub-liquidus temperatures are scarce and cooling-rate dependent, disequilibrium rheological data are virtually absent. In fact, no in situ thermal characterization of liquid or multiphase mixtures during rheological experiments, under either static or dynamic thermal conditions has been presented to date. Here we describe a new experimental setup for in situ thermal characterization of cooling/crystallizing lavas during viscosity measurement at temperatures up to 1600 °C. We use this device to recover in situ, real-time, observations of the combined rheological and thermal evolution of natural, re-melted lava samples during the transient disequilibrium conditions characteristic of lava flows and shallow crustal magma migration and storage systems in nature. We present the calibration procedure and the method employed to recover the thermal evolution of an experimental sample during flow in varying shear regimes, assess the experimental uncertainty and show the ability of the apparatus to measure the release of latent heat of crystallization during transient rheological experiments. We further report the results from a first experimental study on the rheological and thermal evolution of a basaltic lava undergoing continuous cooling at a series of different cooling rates and discuss the implications of the results for magma migration and lava flow emplacement.

[1]  Structures, textures, and cooling histories of Columbia River basalt flows , 1986 .

[2]  H. Mader,et al.  The rheology of two-phase magmas: A review and analysis , 2013 .

[3]  L. Fortuna,et al.  Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model , 2008 .

[4]  R. Stevenson,et al.  The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid-glass transition in volcanic processes , 1995 .

[5]  Hiroaki Sato,et al.  Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan , 2007 .

[6]  K. Hess,et al.  The influence of excess alkalis on the viscosity of a haplogranitic melt , 1995 .

[7]  Á. Castruccio,et al.  The influence of effusion rate and rheology on lava flow dynamics and morphology: A case study from the 1971 and 1988–1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile , 2016 .

[8]  Andrew J. L. Harris,et al.  Textural and rheological evolution of basalt flowing down a lava channel , 2014, Bulletin of Volcanology.

[9]  P. Lestuzzi,et al.  Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy , 2016, Bulletin of Volcanology.

[10]  A. Harris,et al.  Field measurements of heat loss from skylights and lava tube systems , 2007 .

[11]  James P. Kauahikaua,et al.  Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i , 1998 .

[12]  Ciro Del Negro,et al.  Forecasting lava flow hazards during the 2006 Etna eruption: Using the MAGFLOW cellular automata model , 2009, Comput. Geosci..

[13]  S. Calvari,et al.  Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna , 1998 .

[14]  J. Hammer Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization , 2006 .

[15]  M. Manga,et al.  The yield strength of subliquidus basalts — experimental results , 2001 .

[16]  G. Ventura,et al.  Intrinsic solidification behaviour of basaltic to rhyolitic melts: a cooling rate experimental study , 2013 .

[17]  D. Dingwell,et al.  Modelling the non-Arrhenian rheology of silicate melts: Numerical considerations , 2002 .

[18]  P. Besson,et al.  Redox state, microstructure and viscosity of a partially crystallized basalt melt , 2004 .

[19]  K. Hess,et al.  Viscosities of hydrous leucogranitic melts: A non-Arrhenian model , 1996 .

[20]  P. Richet,et al.  Water and the viscosity of andesite melts , 1996 .

[21]  D. Dingwell,et al.  Non-Newtonian Rheology of Igneous Melts at High Stresses and Strain Rates: Experimental Results for Rhyolite, Andesite, Basalt, and Nephelinite , 1990 .

[22]  E. Boschi,et al.  Thermo‐rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo , 2007 .

[23]  A. Vona,et al.  The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts , 2013, Contributions to Mineralogy and Petrology.

[24]  I. Carmichael,et al.  The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states , 1991 .

[25]  J. Blundy,et al.  Magma heating by decompression-driven crystallization beneath andesite volcanoes , 2006, Nature.

[26]  J. Kauahikaua,et al.  The transition from 'A'ā to Pāhoehoe crust on flows emplaced during the Pu'u 'ō'Ō-Kupaianaha eruption , 2003 .

[27]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[28]  D. Dingwell,et al.  Physical properties of CaAl2Si2O8–CaMgSi2O6–FeO–Fe2O3 melts: Analogues for extra-terrestrial basalt , 2013 .

[29]  J. Russell,et al.  High-temperature deformation of volcanic materials in the presence of water , 2008 .

[30]  J. M. Rhodes,et al.  Degassing-induced crystallization of basaltic magma and effects on lava rheology , 1985, Nature.

[31]  D. Walker,et al.  Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies , 1976 .

[32]  Peter J. Mouginis-Mark,et al.  Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii , 1994 .

[33]  A. Harris,et al.  FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel , 2001 .

[34]  D. Dingwell,et al.  Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador) , 2015, Geochemistry, geophysics, geosystems : G(3).

[35]  Heat loss measured at a lava channel and its implications for down-channel cooling and rheology , 2005 .

[36]  A. Whittington,et al.  Water and the viscosity of depolymerized aluminosilicate melts , 2000 .

[37]  A. Navrotsky,et al.  Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt , 1994 .

[38]  A. Whittington,et al.  Rheology of lava flows on Mercury: An analog experimental study , 2015 .

[39]  P. Papale,et al.  Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna , 2010 .

[40]  A. Vona,et al.  The Rheology of crystal-bearing basaltic magmas from Stromboli and Etna , 2011 .

[41]  D. Dingwell,et al.  Viscosities of melts in the Na2OFeOFe2O3SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts , 1988 .

[42]  D. Giordano,et al.  High-temperature limits on viscosity of non-Arrhenian silicate melts , 2004 .

[43]  Robert L. Smith,et al.  Viscosity and water content of rhyolite glass , 1963 .

[44]  D. B. Drucwrr Redox viscometry of some Fe-bearing silicate melts , 2007 .

[45]  P. Scarlato,et al.  Plagioclase–melt (dis)equilibrium due to cooling dynamics: Implications for thermometry, barometry and hygrometry , 2011 .

[46]  J. Russell,et al.  The multiphase rheology of magmas from Monte Nuovo (Campi Flegrei, Italy) , 2013 .

[47]  H. Ishibashi Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan , 2009 .

[48]  L. Taylor,et al.  The effects of cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: A microprobe study , 1979 .

[49]  A. C. Macedonio Viscous heating effects in fluids with temperature-dependent viscosity: triggering of secondary flows , 2003, Journal of Fluid Mechanics.

[50]  D. Dingwell,et al.  The effect of oxidation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2 , 1987 .

[51]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[52]  D. Virgo,et al.  Influence of pressure, temperature, and bulk composition on melt structures in the system NaAlSi3+) Si<2) O<6) , 1978 .

[53]  Richard P. Taylor,et al.  Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar , 1992 .

[54]  D. Dingwell,et al.  Viscosity-temperature relationships in the system Na2Si2O5-Na4Al2O5 , 1986 .

[55]  F. Gibb Supercooling and the crystallization of plagioclase from a basaltic magma , 1974, Mineralogical Magazine.

[56]  A. Harris,et al.  Pahoehoe to `a`a transition of Hawaiian lavas: an experimental study , 2014, Bulletin of Volcanology.

[57]  K. Cashman Relationship between plagioclase crystallization and cooling rate in basaltic melts , 1993 .

[58]  F. J. Ryerson,et al.  Rheology of subliquidus magmas: 1. Picritic compositions , 1988 .

[59]  A. Tsuchiyama,et al.  Effect of stirring on crystallization kinetics of basalt: texture and element partitioning , 1986 .

[60]  G. Giordano,et al.  Crystallization kinetics and rheology of leucite-bearing tephriphonolite magmas from the Colli Albani volcano (Italy) , 2016 .

[61]  F. Spera,et al.  Rheology and microstructure of magmatic emulsions : theory and experiments , 1992 .

[62]  D. Dingwell,et al.  Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts , 2014 .

[63]  D. Dingwell,et al.  Viscous heating in silicate melts: An experimental and numerical comparison , 2012 .

[64]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[65]  G. Chigna,et al.  Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala) , 2016, Bulletin of Volcanology.

[66]  F. Arzilli,et al.  Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt , 2013, Contributions to Mineralogy and Petrology.

[67]  G. F.R.,et al.  Shear viscosities of ferrosilicate liquids , 2007 .

[68]  D. Dingwell,et al.  The rheological evolution of alkaline Vesuvius magmas and comparison with alkaline series from the Phlegrean Fields, Etna, Stromboli and Teide , 2009 .

[69]  D. Dingwell,et al.  Shear viscosities of ferrosilicate liquids , 1989 .

[70]  R. S. J. Sparks,et al.  Field measurements of the rheology of lava , 1978, Nature.

[71]  Hiroaki Sato Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano , 2005 .

[72]  James P. Kauahikaua,et al.  Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā , 1999 .

[73]  N. Deligne,et al.  How lava flows: New insights from applications of lidar technologies to lava flow studies , 2013 .

[74]  P. Nehlig,et al.  Tephrochronology of the Mont-Dore volcanic Massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity , 2014, Bulletin of Volcanology.

[75]  M. Dragoni,et al.  The effect of crystallization on the rheology and dynamics of lava flows , 1994 .

[76]  Db Dingwell,et al.  Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions , 2002, Bulletin of Volcanology.

[77]  L. Taylor,et al.  Crystal/liquid partitioning in augite: effects of cooling rate , 1980 .

[78]  E. Fujita,et al.  LavaSIM: its physical basis and applicability , 2015, Special Publications.

[79]  J. Gottsmann,et al.  Predicting shear viscosity during volcanic processes at the glass transition: a calorimetric calibration , 2002 .

[80]  M. Ghiorso,et al.  MELTS_Excel: A Microsoft Excel‐based MELTS interface for research and teaching of magma properties and evolution , 2015 .

[81]  P. Mouginis-Mark,et al.  COOLING RATE OF AN ACTIVE HAWAIIAN LAVA FLOW FROM NIGHTTIME SPECTRORADIOMETER MEASUREMENTS , 1992 .

[82]  D. Dingwell,et al.  Viscous heating in rhyolite: An in situ experimental determination , 2008 .

[83]  D. L. Peck,et al.  The viscosity of basaltic magma; an analysis of field measurements in Makaopuhi lava lake, Hawaii , 1968 .

[84]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[85]  D. Dingwell,et al.  Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6 , 2008 .

[86]  R. Sparks,et al.  Classification and formation of lava levees on Mount Etna, Sicily , 1976 .

[87]  A. Harris,et al.  Lava effusion rate definition and measurement: a review , 2007 .

[88]  Michael Manga,et al.  Bubble suspension rheology and implications for conduit flow , 2005 .

[89]  H. Mader,et al.  The rheology of a bubbly liquid , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[90]  G. Ventura,et al.  Glass forming ability and crystallisation behaviour of sub-alkaline silicate melts , 2015 .

[91]  G. Lofgren Experimental studies on the dynamic crystallization of silicate melts , 1980 .

[92]  K. Ishihara,et al.  Numerical Simulation of Lava Flows on Some Volcanoes in Japan , 1990 .

[93]  Youxue Zhang,et al.  Toward a general viscosity equation for natural anhydrous and hydrous silicate melts , 2007 .

[94]  Giovanni Macedonio,et al.  Computational modeling of lava flows: A review , 2005 .

[95]  T. L. Wright,et al.  Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi Lava Lake, Hawaii , 1977 .

[96]  Harry Pinkerton,et al.  Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field-measurements on lavas from Mount Etna. , 1995 .

[97]  D. Dingwell,et al.  Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation , 1985 .

[98]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[99]  Martin O. Saar,et al.  Numerical models of the onset of yield strength in crystal–melt suspensions , 2001 .