Quasi-angle-preserving mesh deformation using the least-squares approach

We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.

[1]  克寛 北嶋,et al.  ガウス関数に基づくFree-Form Deformation , 1999 .

[2]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[3]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[4]  Guozhao Wang,et al.  Direct manipulation of free-form deformation using curve-pairs , 2013, Comput. Aided Des..

[5]  Marc Alexa,et al.  A sketch-based interface for detail-preserving mesh editing , 2007, SIGGRAPH Courses.

[6]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[7]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Xuan Zhou,et al.  A new mesh deformation method based on disk relaxation algorithm with pre-displacement and post-smoothing , 2013, J. Comput. Phys..

[9]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[10]  Kun Zhou,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, ACM Trans. Graph..

[11]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[12]  Sabine Coquillart,et al.  Axial deformations: an intuitive deformation technique , 1994, Comput. Aided Des..

[13]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[14]  Daniel Cohen-Or,et al.  Linear rotation-invariant coordinates for meshes , 2005, ACM Trans. Graph..

[15]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[16]  Ligang Liu,et al.  Dual Laplacian morphing for triangular meshes , 2007, Comput. Animat. Virtual Worlds.

[17]  Rémi Ronfard,et al.  Detail-preserving variational surface design with multiresolution constraints , 2004, Proceedings Shape Modeling Applications, 2004..

[18]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, ACM Trans. Graph..

[19]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[20]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[21]  Xiao-Diao Chen,et al.  Free-Form Deformation with Rational DMS-Spline Volumes , 2008, Journal of Computer Science and Technology.

[22]  John F. Hughes,et al.  Direct manipulation of free-form deformations , 1992, SIGGRAPH.

[23]  Guozhao Wang,et al.  Dual Laplacian morphing for triangular meshes , 2007 .

[24]  Marc Alexa,et al.  A sketch-based interface for detail-preserving mesh editing , 2005, SIGGRAPH 2005.

[25]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[26]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[27]  Sheng-Gwo Chen,et al.  Estimating normal vectors and curvatures by centroid weights , 2004, Comput. Aided Geom. Des..