L-Graphs and Monotone L-Graphs

In an $\mathsf{L}$-embedding of a graph, each vertex is represented by an $\mathsf{L}$-segment, and two segments intersect each other if and only if the corresponding vertices are adjacent in the graph. If the corner of each $\mathsf{L}$-segment in an $\mathsf{L}$-embedding lies on a straight line, we call it a monotone $\mathsf{L}$-embedding. In this paper we give a full characterization of monotone $\mathsf{L}$-embeddings by introducing a new class of graphs which we call "non-jumping" graphs. We show that a graph admits a monotone $\mathsf{L}$-embedding if and only if the graph is a non-jumping graph. Further, we show that outerplanar graphs, convex bipartite graphs, interval graphs, 3-leaf power graphs, and complete graphs are subclasses of non-jumping graphs. Finally, we show that distance-hereditary graphs and $k$-leaf power graphs ($k\le 4$) admit $\mathsf{L}$-embeddings.

[1]  Jérémie Chalopin,et al.  Planar graphs are in 1-STRING , 2007, SODA '07.

[2]  László Lovász,et al.  Rubber bands, convex embeddings and graph connectivity , 1988, Comb..

[3]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[4]  Dieter Rautenbach Some remarks about leaf roots , 2006, Discret. Math..

[5]  Martin Charles Golumbic,et al.  String graphs of k-bend paths on a grid , 2011, Electron. Notes Discret. Math..

[6]  Stefan Felsner,et al.  Intersection Graphs of L-Shapes and Segments in the Plane , 2014, MFCS.

[7]  Therese C. Biedl,et al.  Order-Preserving 1-String Representations of Planar Graphs , 2017, SOFSEM.

[8]  Martin Pergel,et al.  On Edge Intersection Graphs of Paths with 2 Bends , 2016, WG.

[9]  Martin Charles Golumbic,et al.  Edge intersection graphs of single bend paths on a grid , 2009, Networks.

[10]  Jérémie Chalopin,et al.  Every planar graph is the intersection graph of segments in the plane: extended abstract , 2009, STOC '09.

[11]  Leonidas J. Guibas,et al.  Algorithms for bichromatic line-segment problems and polyhedral terrains , 1994, Algorithmica.

[12]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[13]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[14]  Paul Molitor A Survey on Wiring , 1991, J. Inf. Process. Cybern..

[15]  Martin Charles Golumbic,et al.  Edge intersection graphs of single bend paths on a grid , 2009 .

[16]  Steven Chaplick,et al.  Planar Graphs as VPG-Graphs , 2012, J. Graph Algorithms Appl..

[17]  Martin Charles Golumbic,et al.  Vertex Intersection Graphs of Paths on a Grid , 2012, J. Graph Algorithms Appl..

[18]  Majid Sarrafzadeh,et al.  Stretching a Knock-Knee Layout for Multilayer Wiring , 1990, IEEE Trans. Computers.

[19]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[20]  F. Sinden Topology of thin film RC circuits , 1966 .

[21]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[22]  Frank Pfeiffer,et al.  Weakly transitive orientations, Hasse diagrams and string graphs , 1993, Discret. Math..

[23]  Uriel Feige,et al.  Approximating the bandwidth via volume respecting embeddings (extended abstract) , 1998, STOC '98.

[24]  L. Lovász Geometric representations of graphs , 2014 .

[25]  Jan Kratochvíl,et al.  Bend-Bounded Path Intersection Graphs: Sausages, Noodles, and Waffles on a Grill , 2012, WG.

[26]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[27]  Martin Pergel,et al.  On edge intersection graphs of paths with 2 bends , 2017, Discret. Appl. Math..

[28]  Therese C. Biedl,et al.  1-string B1-VPG-representations of planar partial 3-trees and some subclasses , 2015, CCCG.

[29]  Jérémie Chalopin,et al.  Planar Graphs Have 1-string Representations , 2010, Discret. Comput. Geom..