Output-sensitive results on convex hulls, extreme points, and related problems

We use known data structures for ray-shooting and linear-programming queries to derive new output-sensitive results on convex hulls, extreme points, and related problems. We show that thef-face convex hull of ann-point setP in a fixed dimensiond≥2 can be constructed in\(0\left( {n log f + \left( {nf} \right)^{1 - 1/\left( {\left[ {d/2} \right] + 1} \right)} \log ^{0\left( 1 \right)} n} \right)\) time; this is optimal if\(f = 0\left( {n^{1/\left[ {d/2} \right]} /\log ^K n} \right)\) for some sufficiently large constantK. We also show that theh extreme points ofP can be computed in\(0\left( {n log^{0\left( 1 \right)} h + \left( {nh} \right)^{1 - 1/\left( {\left[ {d/2} \right] + 1} \right)} \log ^{0\left( 1 \right)} n} \right)\) time. These results are then applied to produce an algorithm that computes the vertices of all the convex layers ofP inO(n 2−γ) time for any constant\(\gamma< 2/\left( {\left[ {d/2} \right]^2 + 1} \right)\). Finally, we obtain improved time bounds for other problems including levels in arrangements and linear programming with few violated constraints. In all of our algorithms the input is assumed to be in general position.

[1]  John F. Canny,et al.  An efficient approach to removing geometric degeneracies , 1992, SCG '92.

[2]  Otfried Cheong,et al.  On ray shooting in convex polytopes , 1993, Discret. Comput. Geom..

[3]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[4]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[5]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[6]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[7]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[8]  Matthias Reichling On the Detection of a Common Intersection of k Convex Objects in the Plane , 1988, Inf. Process. Lett..

[9]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[10]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[11]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[12]  Christian Buchta,et al.  On the Average Number of Maxima in a Set of Vectors , 1989, Inf. Process. Lett..

[13]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[14]  Ketan Mulmuley,et al.  Output sensitive construction of levels and Voronoi diagrams in Rd of order 1 to k , 1990, STOC '90.

[15]  David Eppstein,et al.  Dynamic three-dimensional linear programming , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[16]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[17]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[18]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[19]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[22]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[23]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[24]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[25]  Kenneth L. Clarkson,et al.  More output-sensitive geometric algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[26]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[27]  Jirí Matousek Linear Optimization Queries , 1993, J. Algorithms.

[28]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[29]  Otfried Cheong Ray Shooting in Convex Polytopes , 1992, Symposium on Computational Geometry.

[30]  Peter Widmayer,et al.  k-Violation Linear Programming , 1994, Inf. Process. Lett..

[31]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[32]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[33]  Bernard Chazelle,et al.  Derandomizing an Output-sensitive Convex Hull Algorithm in Three Dimensions , 1995, Comput. Geom..

[34]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[35]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[36]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[37]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[38]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[39]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[40]  Timothy M. Chan,et al.  Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three , 1995, SODA '95.

[41]  Herbert Edelsbrunner,et al.  An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..

[42]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[43]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[44]  Jirí Matousek On geometric optimization with few violated constraints , 1994, SCG '94.