Multilevel approximations in sample-based inversion from the Dirichlet-to-Neumann map
暂无分享,去创建一个
[1] S. MacLachlan,et al. Multilevel upscaling through variational coarsening , 2006 .
[2] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[3] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[4] K. Stüben. Algebraic multigrid (AMG): experiences and comparisons , 1983 .
[5] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[6] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[7] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[8] K. Stüben. A review of algebraic multigrid , 2001 .
[9] J. E. Dendy. Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients , 1987 .
[10] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[11] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[12] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[13] J. Dendy. Black box multigrid , 1982 .