Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models

Les assimilats carbones circulent de zones « sources » telles les feuilles, vers des « puits » ou ils sont preleves et utilises. Ces flux d'assimilats dependent principalement des distances entre sources et puits ainsi que des capacites respectives des differents puits a prelever et utiliser les assimilats disponibles. Il est largement admis aujourd'hui que le mecanisme de base de la translocation est un flux de masse. Mais malgre sa simplicite conceptuelle, la simulation de ce processus implique des calculs trop complexes pour une modelisation pratique. On trouve actuellement quatre approches modelisatrices principales : (i) l'utilisation de coefficients d'allocation empiriques; (ii) la mise en oeuvre de regles de croissance, notamment des equilibres fonctionnels et autres principes teleonomiques; (iii) l'analogie electrique avec des resistances; (iv) des regles de repartition basees sur les « forces » relatives des differents puits (modeles hierarchiques et modeles proportionnels). Ces diverses classes de modeles sont parfois conceptuellement moins eloignees les unes des autres qu'il n'y parait. Elles sont presentees en relation avec leur generalite et leur capacite a rendre compte d'une architecture complexe ou des influences de l'environnement. On souligne l'importance des retroactions entre allocation et croissance.

[1]  P. W. West Model of Above-ground Assimilate Partitioning and Growth of Individual Trees in Even-aged Forest Monoculture , 1993 .

[2]  T. McMahon,et al.  Tree structures: deducing the principle of mechanical design. , 1976, Journal of theoretical biology.

[3]  J. R. Donnelly Seasonal changes in photosynthate transport within elongating shoots of Populus grandidentata , 1974 .

[4]  E. David Ford,et al.  A Model of Competition Incorporating Plasticity through Modular Foliage and Crown Development , 1993 .

[5]  A. Mäkelä,et al.  Comparison of Two Shoot—Root Partitioning Models with Respect to Substrate Utilization and Functional Balance , 1987 .

[6]  J. Wilson A review of evidence on the control of shoot: root ratio , 1988 .

[7]  Seppo Kellomäki,et al.  A model for the structural growth of young Scots pine crowns based on light interception by shoots , 1995 .

[8]  J. Thornley A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants , 1972 .

[9]  H. M. Rauscher,et al.  ECOPHYS: An ecophysiological growth process model for juvenile poplar. , 1990, Tree physiology.

[10]  M. R. Thorpe,et al.  A Simple Mechanistic Model of Phloem Transport which Explains Sink Priority , 1993 .

[11]  Petteri Vanninen,et al.  An application of process-based modelling to the development of branchiness in Scots pine. , 1997 .

[12]  M. Vandame,et al.  Mobilization of carbon reserves in young walnut trees , 1993 .

[13]  Robert Muetzelfeldt,et al.  Hierarchical approach to forest ecosystem simulation , 1996 .

[14]  R. L. Davidson Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grasses and Clover , 1969 .

[15]  M. Teschner,et al.  Mechanical Control of Root Growth: A Computer Simulation. , 1997, Journal of theoretical biology.

[16]  Pertti Hari,et al.  Stand growth model based on carbon uptake and allocation in individual trees , 1986 .

[17]  Y. L. Grossman,et al.  PEACH: A simulation model of reproductive and vegetative growth in peach trees. , 1994, Tree physiology.

[18]  Harry T. Valentine,et al.  A Carbon-balance Model of Stand Growth: a Derivation Employing Pipe-model Theory and the Self-thinning Rule , 1988 .

[19]  F. I. Woodward,et al.  Calculation of Translocation Coefficients from Phloem Anatomy for use in Crop Models , 1995 .

[20]  J. P. Cooper Crop processes in controlled environments: A. R. Rees, K. E. Cockshull, D. W. Hand and R. G. Hurd (Editors). Academic Press, London and New York, 1972, xiii + 391 pp., £6.50 , 1973 .

[21]  F. Hoffmann FAGUS, A MODEL FOR GROWTH AND DEVELOPMENT OF BEECH , 1995 .

[22]  J. Davis,et al.  Assimilation and Translocation Patterns of Carbon-14 in the Shoot of Fruiting Pecan Trees Carya illinoensis Koch1,2 , 1974, Journal of the American Society for Horticultural Science.

[23]  Andrew Paul Gutierrez,et al.  A demographic model of assimilation and allocation of carbon and nitrogen in grapevines , 1991 .

[24]  E. F. Bradley,et al.  Collection and processing of field data. , 1967 .

[25]  Jari Perttunen,et al.  LIGNUM: A Tree Model Based on Simple Structural Units , 1996 .

[26]  Henri Baillères,et al.  Tree biomechanics : growth, cumulative prestresses, and reorientations , 1994 .

[27]  P. Maillard,et al.  Source-sink relationships for carbon and nitrogen during early growth of Juglans regia L. seedlings: analysis at two elevated CO 2 concentrations , 1999 .

[28]  B. Nicoll,et al.  Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development, and resistance to bending , 1997 .

[29]  J. Thornley,et al.  Modelling allocation with transport/conversion processes. , 1997 .

[30]  Annikki Mäkelä,et al.  A carbon balance model of growth and self-pruning in trees based on structural relationships , 1997 .

[31]  P. Wargo Strach storage and radial growth in woody roots of sugar maple , 1979 .

[32]  J. Thornley,et al.  A Transport-resistance Model of Forest Growth and Partitioning , 1991 .

[33]  François Houllier,et al.  Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatifs , 1997 .

[34]  E. D. Ford,et al.  Simulation of branch growth in the Pinaceae: Interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of carbon† , 1990 .

[35]  F. Houllier,et al.  Prediction of stem profile of Picea abies using a process-based tree growth model. , 1995, Tree physiology.

[36]  Claus Mattheck,et al.  Biomechanical Optimum in Woody Stems , 1995 .

[37]  R. McMurtrie,et al.  Above- and Below-ground Growth of Forest Stands: a Carbon Budget Model , 1983 .

[38]  J. H. M. Thornley,et al.  A Model to Describe the Partitioning of Photosynthate during Vegetative Plant Growth , 1972 .

[39]  Thomas M. Hinckley,et al.  THE THEORY AND PRACTICE OF BRANCH AUTONOMY , 1991 .

[40]  Theodore M. DeJong,et al.  Fruit effects on photosynthesis in Prunus persica , 1986 .

[41]  Loïc Pagès,et al.  A carbon balance model of peach tree growth and development for studying the pruning response. , 1998, Tree physiology.

[42]  R. Dickson,et al.  Carbon and nitrogen allocation in trees , 1989 .

[43]  J. Farrar Sink strength: What is it and how do we measure it? A summary , 1993 .

[44]  Ruth D. Yanai,et al.  Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. , 1991, Tree physiology.

[45]  Annikki Mäkelä,et al.  Implications of the pipe model theory on dry matter partitioning and height growth in trees , 1985 .

[46]  J. Thornley,et al.  Shoot: Root Allocation with Respect to C, N and P: an Investigation and Comparison of Resistance and Teleonomic Models , 1995 .

[47]  R. Graham,et al.  Temporal and spatial scaling from individual trees to plantations: A modeling strategy , 1996 .

[48]  E. Münch,et al.  Die stoffbewegungen in der Pflanze , 1931, Nature.

[49]  James F. Reynolds,et al.  A Coordination Model of Whole-plant Carbon Allocation in Relation to Water Stress☆ , 1997 .

[50]  Harry T. Valentine Height growth, site index, and carbon metabolism. , 1997 .

[51]  James F. Reynolds,et al.  A Shoot:Root Partitioning Model , 1982 .

[52]  F. Humphreys,et al.  VARIATIONS IN SAPWOOD STARCH LEVELS IN SOME AUSTRALIAN FOREST SPECIES , 1965 .

[53]  Roderick C. Dewar,et al.  Carbon Allocation in Trees: a Review of Concepts for Modelling , 1994 .

[54]  T. Kira,et al.  A QUANTITATIVE ANALYSIS OF PLANT FORM-THE PIPE MODEL THEORY : I.BASIC ANALYSES , 1964 .

[55]  I. F. Wardlaw,et al.  Tansley Review No. 27 The control of carbon partitioning in plants. , 1990, The New phytologist.

[56]  Harry T. Valentine,et al.  Tree-growth models: Derivations employing the pipe-model theory , 1985 .

[57]  Hal O. Liechty,et al.  A process-based growth model for young red pine , 1994 .

[58]  Escobar-Gutierrez,et al.  Modelling of allocation and balance of carbon in walnut (Juglans regia L.) seedlings during heterotrophy-autotrophy transition , 1998, Journal of theoretical biology.

[59]  Philippe de Reffye,et al.  A functional model of tree growth and tree architecture , 1997 .

[60]  Eero Nikinmaa,et al.  Implications of varying pipe model relationships on Scots Pine growth in different climates , 1997 .

[61]  Thornley Jh,et al.  Root:shoot interactions. , 1977 .

[62]  L. C. Promnitz A photosynthate allocation model for tree growth , 1972 .

[63]  Hervé Sinoquet,et al.  SIMWAL: A structural-functional model simulating single walnut tree growth in response to climate and pruning , 2000 .

[64]  F. Houllier,et al.  A transport model for tree ring width. , 1997 .

[65]  E. Berardinis,et al.  Use of a dynamic model on dry matter production and allocation in apple orchard ecosystem research. , 1990 .

[66]  Roderick C. Dewar,et al.  A Root-Shoot Partitioning Model Based on Carbon-Nitrogen-Water Interactions and Munch Phloem Flow , 1993 .

[67]  E. David Ford,et al.  Structure and basic equations of a simulator for branch growth in the Pinaceae , 1990 .

[68]  J. Thornley Root:shoot interactions. , 1977, Symposia of the Society for Experimental Biology.

[69]  Risto Sievänen,et al.  Height growth strategies in open-grown trees , 1992 .