ON THE COMPLEXITY OF MINOS PACKAGE FOR LINEAR PROGRAMMING

Using the numerical computational evidence of the MINOS package, for a number of linear programming problems of NETLIB collection, into an empirical study referring to the number of iterations, we conjecture its quasi-linear complexity. Empirically we conjecture that the number of iterations of MINOS, for solving linear programming problems with constraints and variables, is quasi-linear in + .

[1]  D. Spielman,et al.  Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .

[2]  Nimrod Megiddo,et al.  Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm , 1986, Math. Program..

[3]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[4]  D. Larman Paths on Polytopes , 1970 .

[5]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[6]  Karl Heinz Borgwardt,et al.  Empirical Studies on the Average Efficiency of Simplex Variants under Rotation Symmetry , 1993, INFORMS J. Comput..

[7]  S. M. Robinson,et al.  A quadratically-convergent algorithm for general nonlinear programming problems , 1972, Math. Program..

[8]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[9]  Giuseppe Oriolo,et al.  The reduced gradient method for solving redundancy in robot arms , 1990, Robotersysteme.

[10]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[11]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[12]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[13]  William Y. Sit,et al.  Worst case behavior of the steepest edge simplex method , 1979, Discret. Appl. Math..

[14]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .

[15]  V. Klee Polytope pairs and their relationship to linear programming , 1974 .

[16]  Karl-Heinz Küfer An improved asymptotic analysis of the expected number of pivot steps required by the simplex algorithm , 1996, Math. Methods Oper. Res..

[17]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[18]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[19]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[20]  Robert E. Bixby,et al.  Implementing the Simplex Method: The Initial Basis , 1992, INFORMS J. Comput..

[21]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[22]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[23]  Robert G. Jeroslow,et al.  The simplex algorithm with the pivot rule of maximizing criterion improvement , 1973, Discret. Math..

[24]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[25]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[26]  R. E. Marsten An Algorithm for Large Set Partitioning Problems , 1974 .

[27]  K. Borgwardt A Sharp Upper Bound for the Expected Number of Shadow Vertices in Lp-Polyhedra Under Orthogonal Projection on Two-Dimensional Planes , 1999 .

[28]  Petra Huhn,et al.  A lower bound on the average number of Pivot-steps for solving linear programs Valid for all variants of the Simplex-Algorithm , 1999, Math. Methods Oper. Res..

[29]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[30]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[31]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[32]  Donald Goldfarb,et al.  A practicable steepest-edge simplex algorithm , 1977, Math. Program..

[33]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[34]  James K. Ho,et al.  Computational experience with advanced implementation of decomposition algorithms for linear programming , 1983, Math. Program..

[35]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[36]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[37]  N. Amenta,et al.  Deformed products and maximal shadows of polytopes , 1996 .

[38]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..